

zero-riscy: User Manual
January 2018
Revision 0.2

Pasquale Davide Schiavone (pschiavo@iis.ee.ethz.ch)

Micrel Lab and Multitherman Lab
University of Bologna, Italy

Integrated Systems Lab
ETH Zürich, Switzerland

mailto:pschiavo@iis.ee.ethz.ch

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 2 of 25

Copyright 2017 ETH Zurich and University of Bologna.

Copyright and related rights are licensed under the Solderpad Hardware License, Version 0.51 (the “License”); you may not use
this file except in compliance with the License. You may obtain a copy of the License at http://solderpad.org/licenses/SHL-0.51.
Unless required by applicable law or agreed to in writing, software, hardware and materials distributed under this License is
distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 3 of 25

Document Revisions
Rev. Date Author Description
0.1 06.06.17 P.D. Schiavone First Draft
0.2 15.01.18 P.D. Schiavone Fixed CSR reset values

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 4 of 25

Table of Contents
1 Introduction... 6

1.1 Supported Instruction Set ... 6

1.2 ASIC Synthesis .. 6

1.3 FPGA Synthesis ... 6

1.4 Outline .. 7

2 Instruction Fetch ... 8

2.1 Protocol .. 8

3 Load-Store-Unit (LSU) .. 9

3.1 Misaligned Accesses .. 9

3.2 Protocol .. 9

4 Register File ... 11

4.1 Latch-based Register File ... 11

5 Control and Status Registers .. 12

5.1 Machine Status (MSTATUS) .. 12

5.2 Machine Trap-Vector Base Address (MTVEC) ... 13

5.3 Machine Exception PC (MEPC) ... 13

5.4 Machine Cause (MCAUSE) .. 14

5.5 MHARTID ... 14

6 Performance Counters ... 15

6.1 Performance Counter Mode Register (PCMR) ... 15

6.2 Performance Counter Event Register (PCER) ... 15

6.3 Performance Counter Counter Register (PCCR0-31)... 16

7 Exceptions and Interrupts ... 19

7.1 Interrupts .. 19

7.2 Exceptions .. 19

7.3 Handling ... 19

8 Debug Unit ... 20

8.1 Address Map .. 20

8.2 Debug Registers ... 20
8.2.1 Debug Control (DBG_CTRL) .. 21
8.2.2 Debug Hit (DBG_HIT) ... 21
8.2.3 Debug Interrupt Enable (DBG_IE) .. 22
8.2.4 Debug Cause (DBG_CAUSE) .. 23
8.2.5 Debug Hardware Breakpoint x Control (DBG_BPCTRLx) .. 23
8.2.6 Debug Next Program Counter (DBG_NPC) ... 24
8.2.7 Debug Previous Program Counter (DBG_PPC) ... 24

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 5 of 25

8.3 Control and Status Registers .. 25

8.4 Interface ... 25

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 6 of 25

1 Introduction
ZERO-RISCY is a 2-stage in-order 32b RISC-V processor core. ZERO-RISCY has been designed to be small and
efficient. Via two parameters, the core is configurable to support four ISA configurations.
Figure 1 shows a block diagram of the core.

Figure 1: Block Diagram

1.1 Supported Instruction Set
ZERO-RISCY supports the following instructions:

• Full support for RV32I Base Integer Instruction Set

• Full support for RV32E Base Integer Instruction Set

• Full support for RV32C Standard Extension for Compressed Instructions

• Full support for RV32M Integer Multiplication and Division Instruction Set Extension

The RV32M and RV32E can be enable and disable using two parameters.

1.2 ASIC Synthesis
ASIC synthesis is supported for ZERO-RISCY. The whole design is completely synchronous and uses positive-edge
triggered flip-flops, except for the register file, which can be implemented either with latches or with flip-flops. See
Chapter 4 for more details about the register file. The core occupies an area of about 18.9 kGE when the latch based
register file and the RV32IMC ISA is used or 11.6 kGE when the RV32EC is used .

1.3 FPGA Synthesis
FPGA synthesis is supported for ZERO-RISCY when the flip-flop based register file is used. Since latches are not well
supported on FPGAs, it is crucial to select the flip-flop based register file.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 7 of 25

1.4 Outline
This document summarizes all the functionality of the ZERO-RISCY core in more detail. First, the instruction
and data interfaces are explained in Chapter 2 and 3. Chapter 4 explains the register file. Control and status
registers are explained in Chapter 5 and Chapter 6 gives an overview of all performance counters. Chapter
7 deals with exceptions and interrupts, and finally Chapter 8 summarizes the accessible debug registers.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 8 of 25

2 Instruction Fetch
The instruction fetcher of the core is able to supply one instruction to the ID stage per cycle if the instruction cache or
the instruction memory is able to serve one instruction per cycle. The instruction address must be half-word-aligned
due to the support of compressed instructions. It is not possible to jump to instruction addresses that have the LSB bit
set.

For optimal performance and timing closure reasons, a prefetcher is used which fetches instruction from the
instruction memory, or instruction cache.

Table 1 describes the signals that are used to fetch instructions. This interface is a simplified version that is used by
the LSU that is described in Chapter 3. The difference is that no writes are possible and thus it needs less signals.

Signal Direction Description
instr_req_o output Request ready, must stay high until instr_gnt_i

is high for one cycle
instr_addr_o[31:0] output Address
instr_rdata_i[31:0] input Data read from memory
instr_rvalid_i input instr_rdata_is holds valid data when

instr_rvalid_i is high. This signal will be high for
exactly one cycle per request.

instr_gnt_i input The other side accepted the request.
instr_addr_o may change in the next cycle

Table 1: Instruction Fetch Signals

2.1 Protocol
The protocol used to communicate with the instruction cache or the instruction memory is the same as the protocol
used by the LSU. See the description of the LSU in Chapter 3.2 for details about the protocol.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 9 of 25

3 Load-Store-Unit (LSU)
The LSU of the core takes care of accessing the data memory. Load and stores on words (32 bit), half words (16 bit)
and bytes (8 bit) are supported.
Table 2 describes the signals that are used by the LSU.

Signal Direction Description
data_req_o output Request ready, must stay high until data_gnt_i

is high for one cycle
data_addr_o[31:0] output Address
data_we_o output Write Enable, high for writes, low for reads.

Sent together with data_req_o
data_be_o[3:0] output Byte Enable. Is set for the bytes to write/read,

sent together with data_req_o
data_wdata_o[31:0] output Data to be written to memory, sent together with

data_req_o
data_rdata_i[31:0] input Data read from memory
data_rvalid_i input data_rdata_is holds valid data when

data_rvalid_i is high. This signal will be high for
exactly one cycle per request.

data_gnt_i input The other side accepted the request.
data_addr_o may change in the next cycle

Table 2: LSU Signals

3.1 Misaligned Accesses
The LSU is able to perform misaligned accesses, meaning accesses that are not aligned on natural word boundaries.
However, it needs to perform two separate word-aligned accesses internally. This means that at least two cycles are
needed for misaligned loads and stores.

3.2 Protocol
The protocol that is used by the LSU to communicate with a memory works as follows:
The LSU provides a valid address in data_addr_o and sets data_req_o high. The memory then answers with a
data_gnt_i set high as soon as it is ready to serve the request. This may happen in the same cycle as the request was
sent or any number of cycles later. After a grant was received, the address may be changed in the next cycle by the
LSU. In addition, the data_wdata_o, data_we_o and data_be_o signals may be changed as it is assumed that the
memory has already processed and stored that information. After receiving a grant, the memory answers with a
data_rvalid_i set high if data_rdata_i is valid. This may happen one or more cycles after the grant has been received.
Note that data_rvalid_i must also be set when a write was performed, although the data_rdata_i has no meaning in
this case.

Figure 2, Figure 3 and Figure 4 show example-timing diagrams of the protocol.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 10 of 25

Figure 2: Basic Memory Transaction

Figure 3: Back-to-back Memory Transaction

Figure 4: Slow Response Memory Transaction

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 11 of 25

4 Register File
ZERO-RISCY has 31 or 15 32-bit wide registers depending if the RV32E extension is enabled. Register x0 is statically
bound to 0 and can only be read, it does not contain any sequential logic.

There are two flavors of register file available:

1. Latch-based
2. Flip-flop based

While the latch-based register file is recommended for ASICs, the flip-flop based register file is recommended for
FPGA synthesis, although both are compatible with either synthesis target. Note the flip-flop based register file is
significantly larger than the latch-based register-file for an ASIC implementation.

4.1 Latch-based Register File
The latch based register file contains manually instantiated clock gating cells to keep the clock inactive when the
latches are not written.

It is assumed that there is a clock gating cell for the target technology that is wrapped in a module called
cluster_clock_gating and has the following ports:

• clk_i: Clock Input
• en_i: Clock Enable Input
• test_en_i: Test Enable Input (activates the clock even though en_i is not set)
• clk_o: Gated Clock Output

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 12 of 25

5 Control and Status Registers
ZERO-RISCY does not implement all control and status registers specified in the RISC-V privileged specifications, but
is limited to the registers that were needed for the PULP system. The reason for this is that we wanted to keep the
footprint of the core as low as possible and avoid any overhead that we do not explicitly need.

CSR Address Hex Name Acc. Description
11:10 9:8 7:6 5:0
00 11 00 000000 0x300 MSTATUS R/W Machine Status
00 11 00 000101 0x305 MTVEC R Machine Trap-Vector Base Address
00 11 01 000001 0x341 MEPC R/W Machine Exception Program Counter
00 11 01 000010 0x342 MCAUSE R/W Machine Trap Cause
01 11 00 0xxxxx 0x780-0x79F PCCRs R/W Performance Counter Counter Registers
01 11 10 100000 0x7A0 PCER R/W Performance Counter Enable
01 11 10 100001 0x7A1 PCMR R/W Performance Counter Mode
11 11 00 010100 0xF14 MHARTID R Hardware Thread ID

Table 3: Control and Status Register Map

5.1 Machine Status (MSTATUS)
CSR Address: 0x300

Reset Value: 0x0000_1800
31 12 11 7 3

MPP

MPIE

MIE

Detailed:
Bit # R/W Description
12:11 R MPP: Statically 2’b11 and cannot be altered (read-only).
7 R/W Previous Interrupt Enable: When an exception is encountered, MPIE will be set to IE.

When the mret instruction is executed, the value of MPIE will be stored to IE.
3 R/W Interrupt Enable: If you want to enable interrupt handling in your exception handler, set the

Interrupt Enable to 1’b1 inside your handler code.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 13 of 25

5.2 Machine Trap-Vector Base Address (MTVEC)
CSR Address: 0x305
31 7 0

When an exception is encountered, the core jumps to the corresponding handler using the content of the MTVEC as
base address. It is a read-only register which contains the boot address.

Table 3: MTVEC

5.3 Machine Exception PC (MEPC)
CSR Address: 0x341

Reset Value: 0x0000_0000
31 0

MEPC

When an exception is encountered, the current program counter is saved in MEPC, and the core jumps to the
exception address. When an mret instruction is executed, the value from MEPC replaces the current program counter.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 14 of 25

5.4 Machine Cause (MCAUSE)
CSR Address: 0x342

Reset Value: 0x0000_0000
31 4 0

Interrupt

 Exception
Code

Detailed:
Bit # R/W Description
31 R Interrupt: This bit is set when the exception was triggered by an interrupt.
4:0 R Exception Code

Table4: MCAUSE

5.5 MHARTID
CSR Address: 0xF14

Reset Value: Defined
31 10 5 4 3 0

 Cluster ID Core ID

Detailed:
Bit # R/W Description
10:5 R Cluster ID: ID of the cluster
3:0 R Core ID: ID of the core within the cluster

Table 5: MHARTID

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 15 of 25

6 Performance Counters
Performance Counters in ZERO-RISCY are placed inside the Control and Status Registers and can be accessed with
csrr and csrw instructions. See Table 9.1 for the address map of the performance counter registers

6.1 Performance Counter Mode Register (PCMR)
CSR Address: 0x7A1

Reset Value: 0x0000_0003
31 1 0

Saturation
Global Enable

Detailed:
Bit # R/W Description
1 R/W Global Enable: Activate/deactivate all performance counters. If this bit is 0, all

performance counters are disabled. After reset, this bit is set.
0 R/W Saturation: If this bit is set, saturating arithmetic is used in the performance counter

counters. After reset, this bit is set.
Table 6: PCMR

6.2 Performance Counter Event Register (PCER)
CSR Address: 0x7A0

Reset Value: 0x0000_0000
31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TCDM_CONT

ST_EXT_CYC

LD_EXT_CYC

ST_EXT

LD_EXT

DELAY_SLOT

BRANCH

JUMP

ST

LD

W
BRANCH_CYC

W
BRANCH

IMISS

- -

INSTR

CYCLES

Detailed:
Bit # R/W Description
16 R/W TCDM_CONT
15 R/W ST_EXT_CYC
14 R/W LD_EXT_CYC

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 16 of 25

Bit # R/W Description
13 R/W ST_EXT
12 R/W LD_EXT
11 R/W DELAY_SLOT
10 R/W BRANCH
9 R/W JUMP
8 R/W ST
7 R/W LD
6 R/W WBRANCH_CYC
5 R/W WBRANCH
4 R/W IMISS
3 R/W RESERVED
2 R/W RESERVED
1 R/W INSTR
0 R/W CYCLES

Table 7: PCER

Each bit in the PCER register controls one performance counter. If the bit is 1, the counter is enabled and starts
counting events. If it is 0, the counter is disabled and its value won’t change.

In the ASIC there is only one counter register, thus all counter events are masked by PCER and ORed together, i.e. if
one of the enabled event happens, the counter will be increased. If multiple non-masked events happen at the same
time, the counter will only be increased by one.
In order to be able to count separate events on the ASIC, the program can be executed in a loop with different events
configured.

In the FPGA or RTL simulation version, each event has its own counter and can be accessed separately.

6.3 Performance Counter Counter Register (PCCR0-31)
CSR Address: 0x780 - 0x79F

Reset Value: 0x0000_0000
31 0

Unsigned Integer Counter Value

Table 4: PCCR0-31

PCCR registers support both saturating and wrap-around arithmetic. This is controlled by the saturation bit in PCMR.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 17 of 25

Register Name Description
PCCR0 CYCLES Counts the number of cycles the core was active (not

sleeping)
PCCR1 INSTR Counts the number of instructions executed
PCCR2 - Reserved
PCCR3 - Reserved
PCCR4 IMISS Cycles waiting for instruction fetches, i.e. number of

instructions wasted due to non-ideal caching
PCCR5 LD Number of data memory loads executed.

Misaligned accesses are counted twice
PCCR6 ST Number of data memory stores executed.

Misaligned accesses are counted twice
PCCR7 JUMP Number of unconditional jumps (j, jal, jr, jalr)
PCCR8 BRANCH Number of branches.

Counts taken and not taken branches
PCCR9 BTAKEN Number of taken branches.
PCCR10 RVC Number of compressed instructions executed
PCCR11 LD_EXT Number of memory loads to EXT executed. Misaligned accesses

are counted twice. Every non-TCDM access is considered external
(PULP only)

PCCR12 ST_EXT Number of memory stores to EXT executed. Misaligned accesses
are counted twice. Every non-TCDM access is considered external
(PULP only)

PCCR13 LD_EXT_CYC Cycles used for memory loads to EXT. Every non-TCDM access is
considered external (PULP only)

PCCR14 ST_EXT_CYC Cycles used for memory stores to EXT. Every non-TCDM access is
considered external (PULP only)

PCCR15 TCDM_CONT Cycles wasted due to TCDM/log-interconnect contention (PULP
only)

PCCR31 ALL Special Register, a write to this register will set all counters to the
supplied value

Table 8: PCCR Definitions

In the FPGA, RTL simulation and Virtual-Platform there are individual counters for each event type, i.e. PCCR0-30
each represent a separate register. To save area in the ASIC, there is only one counter and one counter register.
Accessing PCCR0-30 will access the same counter register in the ASIC. Reading/writing from/to PCCR31 in the ASIC
will access the same register as PCCR0-30.

Figure 6 shows how events are first masked with the PCER register and then ORed together to increase the one
performance counter PCCR.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 18 of 25

Figure 5: Events and PCCR, PCMR and PCER on the ASIC.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 19 of 25

7 Exceptions and Interrupts
ZERO-RISCY supports interrupts, exceptions on illegal instructions.

Address Description
0x00-0x7C Interrupts 0 – 31
0x80 Reset
0x84 Illegal Instruction
0x88 ECALL Instruction Executed

Table 5: Interrupt/Exception Offset Vector Table

The base address of the interrupt vector table is given by the boot address. The most significant 3 bytes of the boot
address given to the core are used for the first instruction fetch of the core and as the basis of the interrupt vector
table. The core starts fetching at the address made by concatenating the most significant 3 bytes of the boot address
and the reset value (0x80) as the least significant byte. The boot address can be changed after the first instruction
was fetched to change the interrupt vector table address. It is assumed that the boot address is supplied via a register
to avoid long paths to the instruction fetch unit.

7.1 Interrupts
Interrupts can only be enabled/disabled on a global basis and not individually. It is assumed that there is an
event/interrupt controller outside of the core that performs masking and buffering of the interrupt lines. The global
interrupt enable is done via the CSR register MSTATUS.
Multiple interrupts requests are assumed to be handled by event/interrupt controller. When an interrupt is taken, the
core gives an acknowledge signal to the event/interrupt controller as well as the interrupt id taken.

7.2 Exceptions
The illegal instruction exception and ecall instruction exceptions cannot be disabled and are always active.

7.3 Handling
ZERO-RISCY does support nested interrupt/exception handling. Exceptions inside interrupt/exception handlers cause
another exception, thus exceptions during the critical part of your exception
handlers, i.e. before having saved the MEPC and MESTATUS registers, will cause those register to be overwritten.
Interrupts during interrupt/exception handlers are disabled by default, but can be explicitly enabled if desired.
Upon executing an mret instruction, the core jumps to the program counter saved in the CSR register MEPC and
restores the MPIE value of the register MSTATUS to IE. When entering an interrupt/exception handler, the core sets
MEPC to the current program counter and saves the current value of MIE in MPIE of the MSTATUS register.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 20 of 25

8 Debug Unit
8.1 Address Map

Address Name Description
0x0000-0x007F Debug Registers Always accessible, even when the core is running
0x400-0x47F GPR (x0-x31) General Purpose Registers

Only accessible if the core is halted
0x500-0x5FF FPR (f0-f31) Reserved. Not used in the ZERO-RISCY core.

First LSP from 0x500-0x57F, then MSP from 0x580-
0x5FF

0x2000-0x20FF Debug Registers Only accessible if the core is halted
0x4000-0x7FFF CSR Control and Status Registers

Only accessible if the core is halted
Table 9: Debug Unit Address Map

Addresses are intended for a bus system with 32-bit wide words.
FPR get more address space than GPR because they can be 64-bit wide even in a 32-bit system.
Addresses have to be aligned to word-boundaries.

8.2 Debug Registers

Address Name Description
0x00 DBG_CTRL Debug Control
0x04 DBG_HIT Debug Hit
0x08 DBG_IE Debug Interrupt Enable
0x0C DBG_CAUSE Debug Cause (Why we entered debug state)
0x40 DBG_BPCTRL0 HW BP0 Control
0x44 DBG_BPDATA0 HW BP0 Data
0x48 DBG_BPCTRL1 HW BP1 Control
0x4C DBG_BPDATA1 HW BP1 Data
0x50 DBG_BPCTRL2 HW BP2 Control
0x54 DBG_BPDATA2 HW BP2 Data
0x58 DBG_BPCTRL3 HW BP3 Control
0x5C DBG_BPDATA3 HW BP3 Data
0x60 DBG_BPCTRL4 HW BP4 Control

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 21 of 25

Address Name Description
0x64 DBG_BPDATA4 HW BP4 Data
0x68 DBG_BPCTRL5 HW BP5 Control
0x6C DBG_BPDATA5 HW BP5 Data
0x70 DBG_BPCTRL6 HW BP6 Control
0x74 DBG_BPDATA6 HW BP6 Data
0x78 DBG_BPCTRL7 HW BP7 Control
0x7C DBG_BPDATA7 HW BP7 Data
0x2000 DBG_NPC Next PC
0x2004 DBG_PPC Previous PC

Table 10: Debug Unit Registers

8.2.1 Debug Control (DBG_CTRL)
Compact:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved HALT
R/W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved SSTE
R/W

Detailed:
Bit # R/W Description
16 W1 HALT: When 1 written, core enters debug mode, when 0 written, core exits debug

mode.
When read, 1 means core is in debug modekkj

0 R/W SSTE: Single-step enable
Table 11: DBG_CTRL register

8.2.2 Debug Hit (DBG_HIT)
Compact:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved SLEEP
R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved SSTH
R/W

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 22 of 25

Detailed:
Bit # R/W Description
16 R SLEEP: Set when the core is in a sleeping state and waits for an event
0 R/W SSTH: Single-step hit, sticky bit that must be cleared by external debugger

Table 12: DBG_HIT register

8.2.3 Debug Interrupt Enable (DBG_IE)
Compact:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TO BE DEFINED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved
ECAL

L reserved SAF SAM LAF LAM BP ILL IAF IAM

R/W R/W R/W R/W R/W R/W R/W R/W R/W

Detailed:
Bit # R/W Description
11 R/W ECALL: Environment call from M-Mode
7 R/W SAF: Store Access Fault (together with LAF)
6 R/W SAM: Store Address Misaligned (never traps)
5 R/W LAF: Load Access Fault (together with SAF)
4 R/W LAM: Load Address Misaligned (never traps)
3 R/W BP: EBREAK instruction causes trap
2 R/W ILL: Illegal Instruction
1 R/W IAF: Instruction Access Fault (not implemented)
0 R/W IAM: Instruction Address Misaligned (never traps)

Table 13: DBG_IE register

When ‘1’ exceptions cause traps, otherwise normal exceptions.

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 23 of 25

8.2.4 Debug Cause (DBG_CAUSE)
Compact:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
IRQ reserved R
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved CAUSE
R

Detailed:
Bit # R/W Description
31 R IRQ: Interrupt caused us to enter debug mode
4:0 R CAUSE: Exception/interrupt number

Table 14: DBG_CAUSE register

8.2.5 Debug Hardware Breakpoint x Control (DBG_BPCTRLx)
Compact:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved IMPL
R0

Detailed:
Bit # R/W Description
0 R IMPL: ZERO-RISCY does not implement hardware breakpoints. Always read as 0.

Table 15: DBG_BPCTRLx register

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 24 of 25

8.2.6 Debug Next Program Counter (DBG_NPC)
Compact:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
NPC[31:16]

R/W
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NPC[15:0]
R/W

Detailed:
Bit # R/W Description
31:0 R/W NPC: Next PC to be executed

Table 16: DBG_NPC register

When written core jumps to PC.

8.2.7 Debug Previous Program Counter (DBG_PPC)
Compact:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PPC[31:16]

R
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPC[15:0]
R

Detailed:
Bit # R/W Description
31:0 W PPC: Previous PC, already executed

Table 17: DBG_PPC register

Values of PPC and NPC when entering debug mode:

Reason PPC NPC Cause GDB Sigval
ebreak ebreak instruction next instruction BP TRAP
ecall ecall instruction IVT entry ECALL TRAP
illegal instruction illegal instruction IVT entry ILL ILL
invalid mem access load/store instruction IVT entry LAF/SAF SEGV
interrupt last instruction IVT entry ? INT

 ZERO-RISCY 15.01.2018

Rev. 0.2 Page 25 of 25

Reason PPC NPC Cause GDB Sigval
halt last instruction next instruction ? TRAP
single-step last instruction next instruction ? TRAP

Table 18: NPC/PPC when entering Debug Mode

8.3 Control and Status Registers

Address Name Description
0x4000 CSR 0 = 0x000 CSR
...
0x7FFC CSR 4095 = 0xFFF CSR

Table 19: Debug CSR Mapping

Can only be accessed when core is in debug mode.

8.4 Interface

Signal Direction Description
debug_req_i input Request
debug_gnt_o output Grant
debug_rvalid_o output Read data valid
debug_addr_i[14:0] input Address for write/read
debug_we_i input Write Enable
debug_wdata_i[31:0] input Write data
debug_rdata_o[31:0] output Read data
debug_halted_o output Is high when core is in debug mode
debug_halt_i input Set high when core should enter debug mode
debug_resume_i input Set high when core should exit debug mode

Table 20: Debug Interface

debug_halted_o, debug_halt_i and debug_resume_i are intended for cross-triggering between multiple
cores. They are not required for single-core debug, thus debug_halt_i and debug-resume_i can be tied to 0.

debug_halt_i and debug_resume_i should be high for only one single cycle to avoid deadlock issues.

	1 Introduction
	1.1 Supported Instruction Set
	1.2 ASIC Synthesis
	1.3 FPGA Synthesis
	1.4 Outline

	2 Instruction Fetch
	2.1 Protocol

	3 Load-Store-Unit (LSU)
	3.1 Misaligned Accesses
	3.2 Protocol

	4 Register File
	4.1 Latch-based Register File

	5 Control and Status Registers
	5.1 Machine Status (MSTATUS)
	5.2 Machine Trap-Vector Base Address (MTVEC)
	5.3 Machine Exception PC (MEPC)
	5.4 Machine Cause (MCAUSE)
	5.5 MHARTID

	6 Performance Counters
	6.1 Performance Counter Mode Register (PCMR)
	6.2 Performance Counter Event Register (PCER)
	6.3 Performance Counter Counter Register (PCCR0-31)

	7 Exceptions and Interrupts
	7.1 Interrupts
	7.2 Exceptions
	7.3 Handling

	8 Debug Unit
	8.1 Address Map
	8.2 Debug Registers
	8.2.1 Debug Control (DBG_CTRL)
	8.2.2 Debug Hit (DBG_HIT)
	8.2.3 Debug Interrupt Enable (DBG_IE)
	8.2.4 Debug Cause (DBG_CAUSE)
	8.2.5 Debug Hardware Breakpoint x Control (DBG_BPCTRLx)
	8.2.6 Debug Next Program Counter (DBG_NPC)
	8.2.7 Debug Previous Program Counter (DBG_PPC)

	8.3 Control and Status Registers
	8.4 Interface

