
pulp-platform.org

@pulp_platform

youtube.com/pulp_platform
PULP Platform
Open Source Hardware, the way it should be!

Integrated Systems Laboratory (ETH Zürich)

Designing Real SoCs using open EDA tools

Luca Benini

lbenini@iis.ee.ethz.ch, luca.Benini@unibo.it

In 11 years PULP team has designed more than 60 chips

2

RISC-V and open-source hardware have been instrumental in our success

A simplified view of the IC design flow

3

GDS2

Synthesizer

PDK

Netlist

P&RVerification

Library3rd Party IP

Chip

Fab

RTL

Most of open source hardware is at RTL level

4

GDS2

Synthesizer

PDK

Netlist

P&RVerification

Library3rd Party IP

Chip

Fab

RTL

Ic
on

s t
ak

en
 fr

om
 fr

ee
 ic

on
s f

ro
m

 fo
nt

aw
es

om
e.

co
m

Platforms

RISC-V Cores and Vector Units

RI5CY
CV32E

RV32

Zero R
Ibex

RV32

Ariane
CVA6

RV64

ARA

RVV

Snitch

RV32

Spatz

RVV

Interconnects

AXI4

APB

LIC HCI

FlooNoC

Peripherals

DMA GPIO

I2SUART

SPIJTAG

Accelerators and ISA extensions

ITA
(Transformers)

RBE, NEUREKA
(QNNs)

FFT
(DSP)

XpulpNN,
XpulpTNN

REDMULE
(FP-Tensor)

R5

MI

O

in
te

rc
on

ne
ct

A

Single core
• PULPino, PULPissimo
• Cheshire

IOT HPC

M

I

O
cluster

interconnect

A R5R5R5

M MMM

in
te

rc
on

ne
ct

Multi-core
• OpenPULP
• ControlPULP

R5

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

A R5R5R5

M MMMM

I

O in
te

rc
on

ne
ct

Heterogeneous, Many-core
• Hero, Carfield, Astral
• Occamy, Mempool

R5

We have created a sandbox to design System on Chips

5

We make everything (we can) available openly
• All our development is on GitHub using a permissive license
• HDL source code, testbenches, software development kit, virtual platform

rm
• PULP is released under the permissive Solderpad license
• Allows anyone to use, change, and make products without restrictions.

6

https://github.com/pulp-platform

https://github.com/pulp-platform
https://github.com/pulp-platform

Diverse set of open source based industry collaborations

7

GF22 (2018)

Arnold
eFPGA coupled with a RISC-V
microcontroller.

In one year from agreement to
actual tapeout

GF22 (2022)

Marsellus
Heterogeneous IoT processor
With Aggressive voltage scaling

TSMC16FF (2022)

Siracusa
SoC for Extended Reality
visual processing

Intel 16 (2023)

Carfield
Open-Research platform for
safety, resilient and
time-predictable systems

Permissive open-source licensing key to our industrial relationships

And many continue to use our work for their research

8

RISC-V week Barcelona 2018 VLSI Symposium 2022

ISSCC Keynote 2020 – Nature 2020 ISPD’23

Some smaller companies you might have heard of 

Unlocking the rest of the design flow

9

GDS2

Synthesizer

PDK

Netlist

P&RVerification

Library3rd Party IP

Chip

Fab

RTL

Most designs will include some 3rd party IP

10
3rd party IP when included can limit what can be open sourced

GDS2

Synthesizer

PDK

Netlist

P&RVerification

Library3rd Party IP

Chip

Fab

RTL

Most designs will include some 3rd party IP

11

GDS2

Synthesizer

PDK

Netlist

P&RVerification

Library3rd Party IP

Chip

Fab

RTL

The chip will contain information from the PDK of the Fab

12

GDS2

Synthesizer

PDK

Netlist

P&RVerification

Library3rd Party IP

Chip

Fab

RTL

Fabs do not make PDK information accessible

Open PDKs are a key enabler for further development

13

GDS2

Synthesizer

Netlist

P&RVerification

3rd Party IP

ChipRTL

PDKLibrary Fab

The output (and even scripts) of EDA vendors are closed

14

GDS2Netlist

P&RVerification

3rd Party IP

ChipRTL

EDA vendors limit the output of their tools

PDKLibrary Fab

Synthesizer

Open-source community can develop EDA tools too!

15

3rd Party IP

ChipRTL

PDKLibrary Fab

Synthesizer P&RVerification

GDS2Netlist

Open-Source synthesis flow: Yosys
• Elaboration
• Behavioral RTL to connected cells (structural)

• High-level phase
• Cells are arithmetic operations
• Fuse and transform operations

16

• Elaboration
• Behavioral RTL to connected cells (structural)

• High-level phase
• Cells are arithmetic operations
• Fuse and transform operations

• Generic gate phase
• Abstract standard cell library
• Gate-level optimizations

17

Open-Source synthesis flow: Yosys

• Elaboration
• Behavioral RTL to connected cells (structural)

• High-level phase
• Cells are arithmetic operations
• Fuse and transform operations

• Generic gate phase
• Abstract standard cell library
• Gate-level optimizations

• Technology mapping
• Performed in included tool called ABC
• High-performance logic optimization
• Mapping to standard cell library

18

Open-Source synthesis flow: Yosys

Yosys is structured, documented and maintained

19

• Clear structure
• ‘Passes’ operate on current representation
• Each pass is a file in a category (directory)

• Guides for users and developers
• Starts with simple ‘how to use’
• Ends with ‘how do I implement a pass’

• Regular contributors
• YosysHQ employs developers
• Other stakeholders also contribute often

But, what about handling practical (>MG designs) with acceptable QoR?

Using SystemVerilog with Yosys
• SystemVerilog is widespread
• PULP-Platform: Cheshire
• lowRISC: OpenTitan and its IPs
• OpenHW Group: CVA6, CV32E40P
• BlackParrot RISC-V core
• Most industrial IPs are implemented in SV

20

Using SystemVerilog with Yosys
• SystemVerilog is widespread
• PULP-Platform: Cheshire
• lowRISC: OpenTitan and its IPs
• OpenHW Group: CVA6, CV32E40P
• BlackParrot RISC-V core
• Most industrial IPs are implemented in SV

• In the past:
• Pre-process the RTL
• SVase simplifies SystemVerilog
• SV2V converts to Verilog

21

Using SystemVerilog with Yosys
• SystemVerilog is widespread
• PULP-Platform: Cheshire
• lowRISC: OpenTitan and its IPs
• OpenHW Group: CVA6, CV32E40P
• BlackParrot RISC-V core
• Most industrial IPs are implemented in SV

• In the past:
• Pre-process the RTL
• Svase simplifies SystemVerilog
• SV2V converts to Verilog

22github.com/povik/yosys-slang

Yosys-Slang is improving quickly

23

• Developed by Martin Povišer
• Yosys developer and freelancer
• Based on Slang (SystemVerilog library)
• Started in June
• First release in November

• Compatibility testing
• See repo below
• If you have a design, consider adding it
• They are used for regression testing

github.com/chipsalliance/sv-testsgithub.com/povik/yosys-slang-compat-suite

• Fully elaborates (# signals)
• Black Parrot (132k)
• BSC Core Tile (62k)
• CV32E40P (16k)
• CVA6 (90k)
• Snitch Cluster (800k)
• Ara (1.8M)
• Mempool
• ITA
• OpenTitan IPs

Yosys-Slang elaborates better

24

Initial Unmanageable
RAM usage

Better flow and
tool fixes

Memory is a
non-problemWe can move to larger designs!

Cheshire synthesis, memory usage over time

Distribution starting now

25

• Release Candidate
• First release end of October / early November

• OSS-CAD Suite (Yosys)
• Will be included as a Yosys plugin

• IIC-OSIC-Tools docker container
• Included in next release
• Yosys plugin (loaded by default)
• ETHZ started using this container
• Croc (educational SoC) already uses it
• Cheshire-IHP130-o will be updated shortly

github.com/YosysHQ/oss-cad-suite-build

github.com/iic-jku/iic-osic-tools

github.com/YosysHQ/oss-cad-suite-build

Library of Arithmetic Unit (LAU)
• Block replacement is implemented in Yosys
• Only used in FPGA designs to infer DSP slices
• Detects and replaces arithmetic operators

• No open-source LAU
• LAU created at IIS as part of a PhD thesis
• A wide range of arithmetic operations
• 3 different performance variants

of generic gate netlists
• Thoroughly QoR evaluated and optimized

• Currently: fully manual selection
• Replace Yosys operators via script
• Instantiate directly in RTL

26github.com/pulp-platform/elau

Optimized ABC Scripts and Better Integration
• Utilizing “Lazy Man’s Synthesis” by Yang et al.
• Pre-computation of optimal 6-input graphs
• Used as look-up-table in a mapping step
• Repeated application with graph re-writing

and balancing in between
• High QoR at an affordable runtime

• Improved ABC integration in Yosys
• Improved ABC command sequence
• Different ABC scripts: span larger design space
• ABC requires defining slew and gain

parameters to use PDK timings
• Otherwise it uses unit-delays

27

1.5x area, 2x peak RAM, 1.5x runtime improvements

Increase speed significantly & span large design space

Our Improved ABC Script
• Optimization loop
• Repeated 20 times
• LMS with 6-input and 4-input LUTs
• Structural choices computation

• Mapping loop
• Convergence: 5-6 iterations
• Optimization and mapping sequence
• Technology mapping

• Buffer optimization and resizing

strash
&get –n
Loop 20
| &opt_iter
loopend
Loop 5
| &opt_iter; &map_iter; &opt_iter
loopend
&map_iter
&put
topo
buffer –p
loop 2
| upsize {period_ps}
| downsize {period_ps}
loopend

28

&st; &if -y –K 6;
&syn2; &b; &st;

&dch –x; &if –K 4;

&st; &nf {period_ps};

Compared to Yosys Default
strash
&get –n
Loop 20
| &opt_iter
loopend
Loop 5
| &opt_iter; &map_iter; &opt_iter
loopend
&map_iter
&put
topo
buffer –p
loop 2
| upsize {period_ps}
| downsize {period_ps}
loopend

29

strash
&get –n
&fraig –x
&put
scorr
dc2
dretime
strash
&get -n
&dch –f
&nf {period_ps}
&put
buffer
upsize {period_ps}
dnsize {period_ps}

&st; &if -y –K 6;
&syn2; &b; &st;

&dch –x; &if –K 4;

&st; &nf {period_ps};

Repeat less-expensive
LMS-based optimization

loop

Repeatedly optimize during
Technology mapping

What Yosys Devs are working on
• Reshape flow to improve runtime/memory
• Generic mapping (techmap command) is a bottleneck
• Time and memory intense
• Idea: Skip it for most operators
• Instead write out AIG and go directly into ABC

• Operator choices (with OpenROAD)
• Yosys synthesizes all operator implementations it knows

(eg different adder architectures)
• Handed to OpenRoad via netlist with attributes
• Backend evaluates and choses fitting one
• First steps towards a joint Synthesis+Backend flow

30

Ongoing Work at ETHZ
• Integrate Mockturtle
• Offers different algorithms

31

Ongoing Work at ETHZ

32

• Integrate Mockturtle
• Offers different algorithms
• Highlight: emap mapper
• Up to 15% smaller average area
• Up to 5% faster critical path

• Good documentation

Tempia Calvino, A. (2024). Technology Mapping and Optimization
Algorithms for Logic Synthesis of Advanced Technologies. Doctoral thesis.

Ongoing Work at ETHZ
• Integrate Mockturtle
• Offers different algorithms
• Highlight: emap mapper
• Up to 15% smaller average area
• Up to 5% faster critical path

• Good documentation

• Exploration using ABC/Mockturtle
• Finer control over ‘abc’ command
• Define custom flows calling other tools

• Multiple scripts with different optimization goals
• On a per-module basis, decide which ones to try
• Evaluate and pick one or more candidates

33

Ongoing Work at ETHZ (2)

34

• Architectural Variants
• VHDL has architectural and behavioral
• We want different variants of an architecture
• Compatible with Verilog/SystemVerilog
• Uses only parameters and attributes

module adder #(
(* arch_variant = "FASTEST, BALANCED, SMALLEST" *)
parameter string SpeedGrade = "BALANCED"

) (
input logic [7:0] a,
input logic [7:0] b,
output logic [7:0] sum

);
if (SpeedGrade == "FASTEST") begin

// fastest implementation
end
else if (SpeedGrade == "SMALLEST") begin

// smallest implementation
end
else begin

// default implementation (balanced)
end

endmodule

Ongoing Work at ETHZ (2)
• Architectural Variants
• VHDL has architectural and behavioral
• We want different variants of an architecture
• Compatible with Verilog/SystemVerilog
• Uses only parameters and attributes

• Why?
• Integrate ETHZ library of arithmetic units
• Prepare Yosys for deeper exploration
• Explore flattening/keeping of hierarchy
• Explore different implementations and evaluate
• Needs to keep track of many internal variations

• Offer place & route variants it may choose from

35

On a more Abstract Level
• Synthesis should explore design spaces
• This requires variants and iterations

• Retain Information
• It may allow for specific optimizations later in the flow
• Eg flattening if there is very little benefit is not good
• Annotate nets/modules etc with additional info
• Eg if you find a bus, make sure it is kept as a bus

and mark it as such -> place and route can use this info

• Add intelligence over time
• Start with manual operator selection
• Move to simple heuristic
• End with complex systems (eg ML-driven)

36

The output (and even scripts) of EDA vendors are closed

37

3rd Party IP

ChipRTL

PDKLibrary Fab

GDS2Netlist

P&RVerification
Yosys

Synthesizer

Place and Route flow in OpenROAD

38

1. Floorplan
• Define size
• Place pads and macros

Place and Route flow in OpenROAD

39

1. Floorplan
• Define size
• Place pads and macros

2. Power distribution

Place and Route flow in OpenROAD

40

1. Floorplan
• Define size
• Place pads and macros

2. Power distribution

3. Placement
• Rough global placement
• Legalize cell positions (detailed placement)

Place and Route flow in OpenROAD

41

1. Floorplan
• Define size
• Place pads and macros

2. Power distribution

3. Placement
• Rough global placement
• Legalize cell positions (detailed placement)

4. Generate clock tree

Place and Route flow in OpenROAD

42

1. Floorplan
• Define size
• Place pads and macros

2. Power distribution

3. Placement
• Rough global placement
• Legalize cell positions (detailed placement)

4. Generate clock tree

5. Routing
• Plan resource utilization for each wire
• Create wires, fix violations (shorts etc)

OpenROAD: A Collection of Backend Tools

43

• Research turned into a common flow
• Global place: RePlace
• Global route: FastRoute
• Clock tree: TritonCTS

• Common openDB data structure
• Designed by industry professionals
• Documented and tested

• Supporting infrastructure around it
• CLI, GUI, reporting, metrics collection etc
• Plugin system for easy extensibility

We need openness along the whole chain: RTL, EDA, PDK

44

GDS2

PDK

Netlist

Library3rd Party IP Fab

RTL

Yosys OpenRoad

Synthesizer

Chip

P&RVerification

We need openness along the whole chain: RTL, EDA, PDK

45

GDS2

PDK

Netlist

Library3rd Party IP Fab

RTL

Yosys OpenRoad

Synthesizer

Chip

P&RVerification

Verilator

We need openness along the whole chain: RTL, EDA, PDK

46

GDS2

PDK

Netlist

Verification

Library3rd Party IP

Chip

Fab

RTL

We are getting there, first fully open chips are underway

Yosys OpenRoad

Synthesizer P&R

Verilator

Meet Basilisk: Open RTL, Open EDA, Open PDK
• Designed in IHP 130nm OpenPDK
• 6.25mm x 5.50mm
• 60MHz
 1.08 MGE logic, 60% density
 24 SRAM macros (114 KiB)

• CVA6 based SoC
• Runs and boots Linux

• Active collaboration with

47

Basilisk is based on PULP: Cheshire SoC Platform

• Multi-million gate design

• 64-bit RISC-V Core
• Complete Linux-capable SoC
• Simple “Raspberry Pi”

• Rich Peripherals
• Includes an open USB 1.1 host

• Open-source DRAM interface
• Digital-only interface

• Silicon-proven
• Multiple tapeouts with commercial EDA

github.com/pulp-platform/cheshire-ihp130-o

48

Open-source vs. Commercial EDA – Reality Check
• Improvements until June 2024 (Basilisk TO)
• SV-to-Verilog chain @ <2min runtime
• Yosys synthesis:
 1.1 MGE (1.6×) @ 77 MHz (2.3×)
 1.4× less runtime, 2.4× less peak RAM

• OpenROAD P&R: tuning
 -12% die area, +10% core utilization

• Improvements June-October
• Yosys-slang replaces SV2V
 1.6× less runtime, 10× less peak RAM
• -10% logic area (preliminary)

49

today

Open Challenges
• Constraints and Timing
• Yosys has zero constraints support
• ABC has very limited support
• We want to use SDC compatible constraints
• Approaches:
• Integrate (parts of) OpenSTA?
• Create something new?

• Yosys needs to respect constraints at every level!
• We need also timing-driven P&R and integration

50

Open Challenges
• Joint Synthesis + PnR flow
• How should the tools integrate?
• How can the flow be more iterative across

Synthesis and PnR?
• How can they collaborate more closely?

(ie synthesis hinting to placer how something may be layed out)

51

Open Challenges
• Interchange Formats
• AIGER and BLIF used between Yosys and ABC
• More difficult to debug for users
• Limits how tools exchange information
• Fundamentally limits some features

(multi clock-domain optimizations/analysis,
re-use of structures etc)

• Missing Features
• Robust variant support
• Annotation of arbitrary objects (requires named objects)
• Fast to read and write

• Do we extend an existing format?
• Can we adapt something else?
• Eg: naja-edits DNL/SNL formats (based on Cap’n Proto)

52

Open Challenges
• Runtime and Memory
• Yosys’ data structure is a legacy constraint
• Yosys devs aware of this
• Changes are either compatible and iterative
• Or break compatibility with large performance gains

• How can we work around this constraint?
• How would we solve it for the future?

53

Open Challenges
• Four main points
• Constraints and Timing
• Joint Synthesis + PnR flow
• Interchange formats
• Runtime and memory optimizations
• Bonus: Can we better leverage compute?
• Heavily multi-threaded
• GPU based techniques and algorithms

54

Croc SoC: A simple chip for students

Designing Linux-capable systems using open EDA tools 55
github.com/pulp-platform/croc

Croc SoC: A simple chip for students

Designing Linux-capable systems using open EDA tools 56

• Croc is simple to understand
• Everything in one repository
• Plain SystemVerilog
• (soon) guides from students for students

• Croc is flexible
• Students can replace or add parts
• Every step in the flow is fully exposed

• Croc flow is easy to run
• Runs on older laptops (<4GB RAM)
• Tools in a docker container

Works on Linux, Windows and MacOS
• 4 Make commands from RTL to GDS

github.com/pulp-platform/crocUsed for ETH Zürich VLSI 2 lecture starting 2025

Benefits of end to end openness

57

• Easier collaboration (no NDAs)
• Reproducible results, benchmarking
• Combined impact of design and design automation

Research

• Increased accessibility
• No black boxes, full visibility
• Experiment with flows and tools

Education

• Transparent chain of trust, sovereignty
• Lower initial cost
• Faster research  product

Industry

58

International Cooperation is Key

More Open PDKs are needed
• We have access to three open PDKs at the moment
• Skywater 130nm
• Globalfoundries 180 (500nm high-voltage flavor of their 180nm node)
• IHP 130nm

• State of the Art from 2000-2004
• Many exciting designs possible

• We need more
• For more innovation: higher volume, faster turn-around, frequent MPWs
• For more capabilities: Access to newer nodes

An Open PDK in the 65-28nm would be a game changer!

59

Looking Forward…

60

• Open EDA is moving fast  MCU MPU HPC/GenAI 

• Scale is the challenge, QoR is next

• Can we accelerate?
• AI for EDA can be a key enabler (LanguageRTL is ripe IMHO)
• ChatGPT arxiv.org/pdf/2305.14019, ChipChat

(arxiv.org/abs/2305.13243)
• Is a LLAMAv3 moment near for AI-based EDA?

Final words
• We use open source because it works
• Allows us to manage complex designs
• Facilitates Industry/Academia Relationships
• Creates Auditable Designs, Reproducible Results
• Enables research into new directions

• Open Source sees no borders
• There is no ‘European/Chinese/American Open Source’,
• There can be ’European/Chinese/American support for Open Source’

61

Helps us and others concentrate work where it matters

Open Source is global, it just can have more or less support in a region/country

There is still
more to come 

• Research on open-source energy-efficient computing
architectures
• Started in 2013, we are celebrating 10 years of our project this year

• Led by Luca Benini
• Involves ETH Zürich (Switzerland) and University of Bologna (Italy)
• Large group of almost 100 people

62

Thank You!

	Designing Real SoCs using open EDA tools
	In 11 years PULP team has designed more than 60 chips
	A simplified view of the IC design flow
	Most of open source hardware is at RTL level
	We have created a sandbox to design System on Chips
	We make everything (we can) available openly
	Diverse set of open source based industry collaborations
	And many continue to use our work for their research
	Unlocking the rest of the design flow
	Most designs will include some 3rd party IP
	Most designs will include some 3rd party IP
	The chip will contain information from the PDK of the Fab
	Open PDKs are a key enabler for further development
	The output (and even scripts) of EDA vendors are closed
	Open-source community can develop EDA tools too!
	Open-Source synthesis flow: Yosys
	Open-Source synthesis flow: Yosys
	Open-Source synthesis flow: Yosys
	Yosys is structured, documented and maintained
	Using SystemVerilog with Yosys
	Using SystemVerilog with Yosys
	Using SystemVerilog with Yosys
	Yosys-Slang is improving quickly
	Yosys-Slang elaborates better
	Distribution starting now
	Library of Arithmetic Unit (LAU)
	Optimized ABC Scripts and Better Integration
	Our Improved ABC Script
	Compared to Yosys Default
	What Yosys Devs are working on
	Ongoing Work at ETHZ
	Ongoing Work at ETHZ
	Ongoing Work at ETHZ
	Ongoing Work at ETHZ (2)
	Ongoing Work at ETHZ (2)
	On a more Abstract Level
	The output (and even scripts) of EDA vendors are closed
	Place and Route flow in OpenROAD
	Place and Route flow in OpenROAD
	Place and Route flow in OpenROAD
	Place and Route flow in OpenROAD
	Place and Route flow in OpenROAD
	OpenROAD: A Collection of Backend Tools
	We need openness along the whole chain: RTL, EDA, PDK
	We need openness along the whole chain: RTL, EDA, PDK
	We need openness along the whole chain: RTL, EDA, PDK
	Meet Basilisk: Open RTL, Open EDA, Open PDK
	Basilisk is based on PULP: Cheshire SoC Platform
	Open-source vs. Commercial EDA – Reality Check
	Open Challenges
	Open Challenges
	Open Challenges
	Open Challenges
	Open Challenges
	Croc SoC: A simple chip for students
	Croc SoC: A simple chip for students
	Benefits of end to end openness
	International Cooperation is Key
	More Open PDKs are needed
	Looking Forward…
	Final words
	Slide Number 62

