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CUTIE: Multi-PetaOP/s/W Ternar

DNN Inference Engine for Tin

Energy Efficiency is Everything

* TinyML requires ultra-low power & tiny memory footprint
= Typical battery-based applications: single digit mW
= Energy harvesting systems: 100s of uW
= Typical sensor node: 100s of KB of memory

* Trend points to ultra-low precision

= Fixed point and sub-byte networks optimize energy-accuracy tradeoff
= Even binarized networks can achieve reasonable accuracy

= Acceleration is key to unlocking full potential
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Acceleration = Exploiting Parallelism

Link Clocki Core Clock DCNN Accelerator
= Textbook State of the Art: Systolic array e | 14x12PE Array

= Scales to many-chip systems

Input Image

= Designed for flexibility

= Heavily pipelined

= Most energy is still NOT spent on computations e TR

- Huge overheads in cIocking & data movement Source: EyeRiss homepage, https://eyeriss.mit.edu/

= Core computional energy between 10-30% BN ! =
= All the rest is memory, data movement and control! I . I | I
I u Hier. Mesh NoC

AlexNet  AlexNet  sparse MobileNet sparse
CONV1 CONV3  AlexNet CONV13 AlexNet
CONV3 bW FC8

Source: “Eyeriss v2: A Flexible Accelerator for
Emerging Deep Neural Networks on Mobile
Devices”, Chen et al., 2018
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Motivation & Contribution

How can we maximize energy-efficiency in low power digital CNN Accelerators on
the architectural level?

DNN Inference Engine for Tin
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= Minimize data movement
= Keep weights and partial results local
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Motivation & Contribution

How can we maximize energy-efficiency in low power digital CNN Accelerators on
the architectural level?

DNN Inference Engine for Tin

* Minimize data movement
= Keep weights and partial results local

= Maximize computational efficiency
= Ultra-low precision operands
= Completely unrolled, parallel architecture
= Minimize switching activity

= Leverage irregular sparsity in computation
= Use ternary weights & activations over binary
= Sparsity-aware training
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System Architecture — OCU

= The compute core of CUTIE

= |ayer-by-layer network execution
= Keep all weights in local buffer

= Multiply-and-add activations and weights
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System Architecture — OCU

= Minimize switching activity
= Completely unrolled inner products instead of MACs: All MACs in one cycle

X%
KERNEL WINDOWS

= Zeros in weights and activations reduce switching activity
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System Architecture — OCU

= Support for Pooling

= Support max and average pooling

= Silence additional hardware if no pooling
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System Architecture — OCU

= Re-ternarize results with dual thresholds
= Fold convolutional and batchnorm biases into thresholds

= Fold batchnorm scaling into thresholds
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System Architecture — Data Path

= Completely unrolled compute architecture
= Limit maximal number of channels

= One compute unit per channel

= | ocal storage minimizes data movement | smeonas =
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System Architecture — Data Path

= Completely unrolled compute architecture
= Limit maximal number of channels

= One compute unit per channel

= Local storage minimizes data movement l//r/
= Compressed ternary storage

= Minimize required memory — 1.6 Bits / Operand
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System Architecture — Data Path

= Completely unrolled compute architecture
= Limit maximal number of channels

= One compute unit per channel

= | ocal storage minimizes data movement
= Compressed ternary storage e
= Minimize required memory — 1.6 Bits / Operand 10 Fone
: o o7 .+
= Very light pipelining s HEE |
: N : T S STAGE 0
= Keep everything as close to combinational as possible e S
= Minimize clocking overheads t—»,__‘__ i
| [.] = = [OUTPUT CHANNELL||
' . . | E IE COMPUTE UNIT |,
= Use registers to silence unused units 18|25 !

STAGE P-1(1)
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System Architecture — Data Path

Feature map from SoC

= Completely unrolled compute architecture
= Limit maximal number of channels

DOUBLE-BUFFERED
FEATURE MAP MEMORY

= One compute unit per channel

= | ocal storage minimizes data movement

= Compressed ternary storage

= Minimize required memory — 1.6 Bits/Operand |~ L i e
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» Dedicated weight & feature map memory
= Large enough to store worst-case feature maps + weights
= |/O is extremely expensive
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Implementation
= CUTIE is highly parametrizable

= Channels, kernel shapes, pipeline depth, memory sizes, ...

= Configuration parameters
= 128 channels
= 3 x 3 kernels
= 32 x 32 pixels feature maps

= Evaluated network

= 9 layers
= Convolution — BatchNorm — Hardtanh
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Results — Numbers

= TSMC 7 nm:
= Avg. energy efficiency: 2.1 POp/s/W

= Peak energy efficiency: 3.1 POp/s/W

= Area: 1.2 mm? 3000

= |nference on CIFAR-10: o

Accuracy: 88% vs. 86%!"! 5 1500
Clock frequency: 66 MHz “5’20 I I I
Average inference power: 7.8 mW .

FPS:1368k Lwamﬂm
Energy per inference: 0.52 pJ vs 13.76 pJl'l
Peak Throughput: 16 TOp/s

2500

2.1 Pop/s/W

|
o

[1]: Moons et al.: BinarEye: An Always-On Energy-Accuracy-Scalable Binary
CNN Processor With All Memory On Chip in 28nm CMOS
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DNN Inference Engine for Tin

Results - Insights
= Ternary > Binary:

= 50% higher energy efficiency for same network & accelerator

= 4% higher accuracy for same network architecture

Combinational |

= 4.8x lower energy per inference at iso-accuracy sl
i S tial
= Fully unrolled > Iterative cquentialll
Clockl
= Significantly less data movement 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
= Spatial smoothness reduces switching activity by > 2x Dynamic [
Leakagel
- Training matters 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Power Consumption Relative to Total Power

= 1.5x higher energy efficiency with sparser networks

= Stay tuned for our tape-out in GF 22 nm!

ns:/larxiv.org/abs/2011.01713

inyML Summit - 23.3.2021

= Find our paper on arxiv: htt



