

PULP PLATFORM Open Source Hardware, the way it should be!

CUTIE – Beyond PetaOp/s/W Ternary DNN Acceleration

Moritz Scherer scheremo@iis.ee.ethz.ch

https://arxiv.org/abs/2011.01713

Special Thanks to: Georg Rutishauser, Lukas Cavigelli, Luca Benini

https://www.youtube.com/pulp_platform

Energy Efficiency is Everything

- TinyML requires ultra-low power & tiny memory footprint
 - Typical battery-based applications: single digit mW
 - Energy harvesting systems: 100s of µW
 - Typical sensor node: 100s of KB of memory
- Trend points to ultra-low precision
 - Fixed point and sub-byte networks optimize energy-accuracy tradeoff
 - Even binarized networks can achieve reasonable accuracy
- Acceleration is key to unlocking full potential

ETH zürich

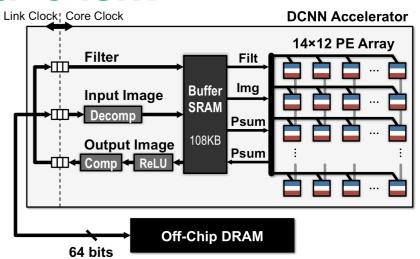
Acceleration = Exploiting Parallelism

Textbook State of the Art: Systolic array

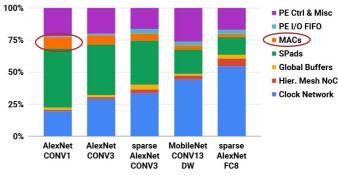
- Scales to many-chip systems
- Designed for flexibility
- Heavily pipelined

Most energy is still NOT spent on computations

- Huge overheads in clocking & data movement
- Core computional energy between 10-30%
- All the rest is memory, data movement and control!



Source: EyeRiss homepage, https://eyeriss.mit.edu/



Source: "Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices", Chen et al., 2018

CUTIE: Multi-PetaOP/s/W Ternary DNN Inference Engine for TinyML

Motivation & Contribution

How can we maximize energy-efficiency in low power digital CNN Accelerators on the architectural level?

CUTIE: Multi-PetaOP/s/W Ternary DNN Inference Engine for TinyML

Motivation & Contribution

How can we maximize energy-efficiency in low power digital CNN Accelerators on the architectural level?

- Minimize data movement
 - Keep weights and partial results local

Motivation & Contribution

How can we maximize energy-efficiency in low power digital CNN Accelerators on the architectural level?

- Minimize data movement
 - Keep weights and partial results local
- Maximize computational efficiency
 - Ultra-low precision operands
 - Completely unrolled, parallel architecture
 - Minimize switching activity

ETHZürich

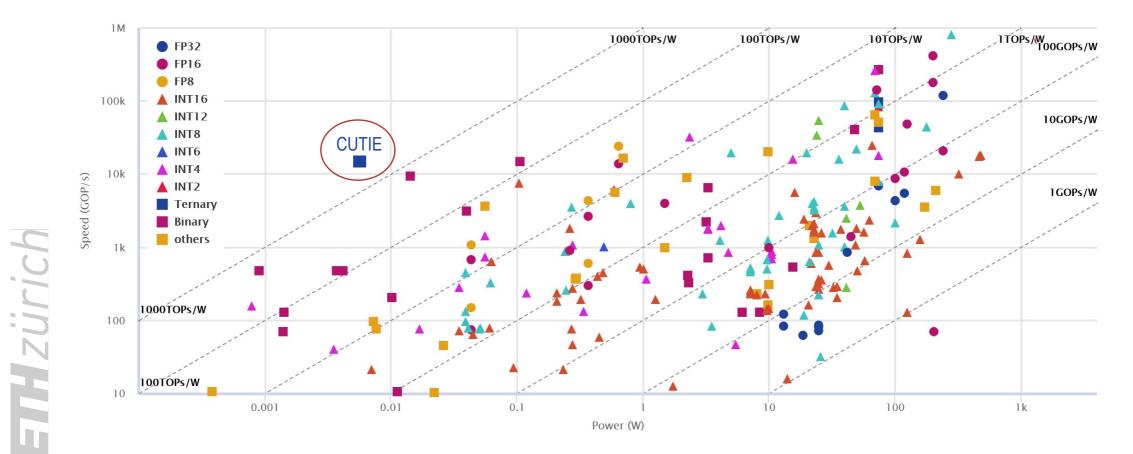
Motivation & Contribution

How can we maximize energy-efficiency in low power digital CNN Accelerators on the architectural level?

- Minimize data movement
 - Keep weights and partial results local
- Maximize computational efficiency
 - Ultra-low precision operands
 - Completely unrolled, parallel architecture
 - Minimize switching activity
 - Leverage irregular sparsity in computation
 - Use ternary weights & activations over binary
 - Sparsity-aware training

ETHZürich

Acceleration: The current trend in TinyML



Adapted from: K. Guo et al., "Neural Network Accelerator Comparison" [Online]. Available: https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/

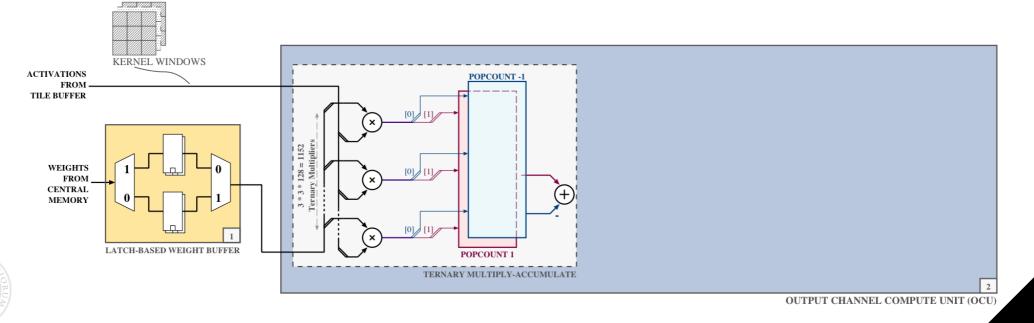
System Architecture – OCU

The compute core of CUTIE

- Layer-by-layer network execution
- Keep all weights in local buffer
- Multiply-and-add activations and weights

System Architecture – OCU

- Minimize switching activity
 - Completely unrolled inner products instead of MACs: All MACs in one cycle
 - Zeros in weights and activations reduce switching activity



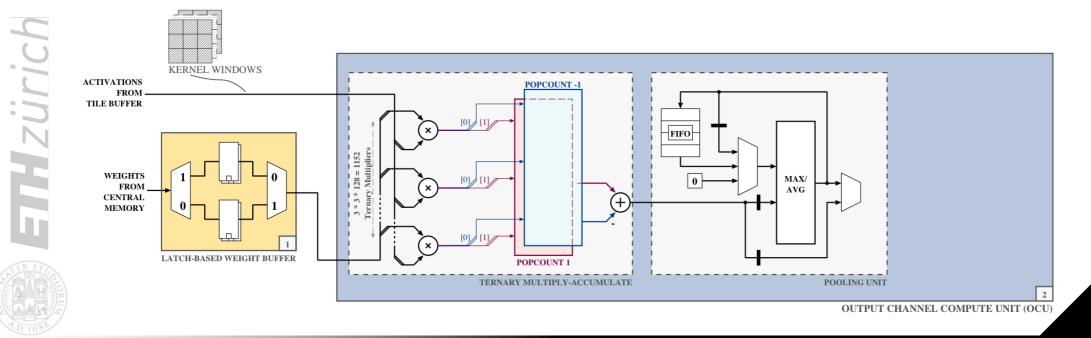
ETH zurich

TinyML Summit - 23.3.2021

System Architecture – OCU

Support for Pooling

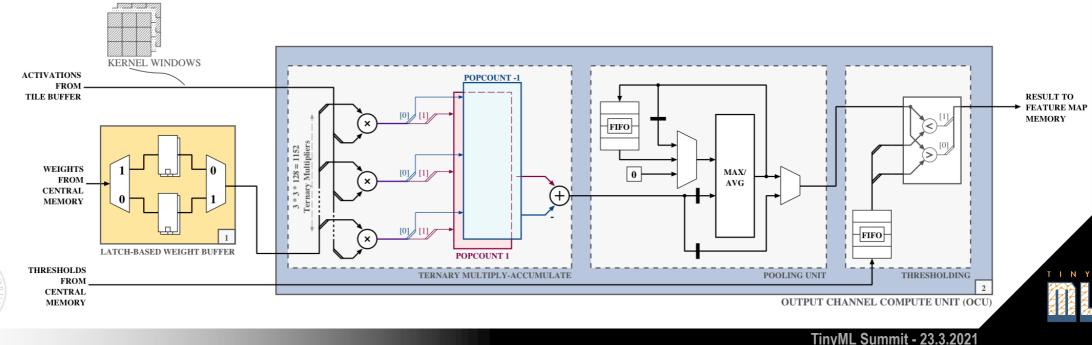
- Support max and average pooling
- Silence additional hardware if no pooling



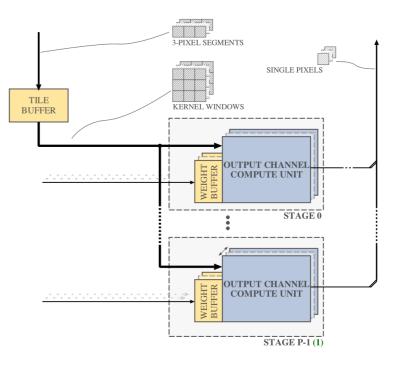
11

- Re-ternarize results with dual thresholds
 - Fold convolutional and batchnorm biases into thresholds
 - Fold batchnorm scaling into thresholds

ETH zürich

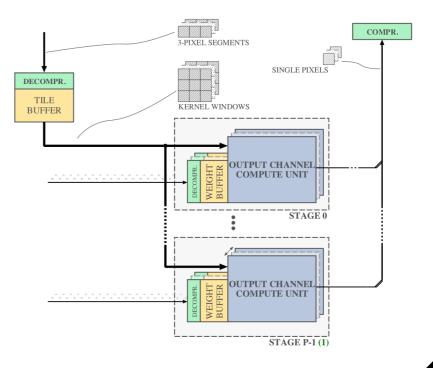


- Completely unrolled compute architecture
 - Limit maximal number of channels
 - One compute unit per channel
 - Local storage minimizes data movement



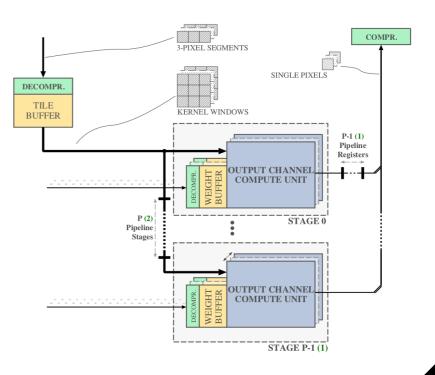
Completely unrolled compute architecture

- Limit maximal number of channels
- One compute unit per channel
- Local storage minimizes data movement
- Compressed ternary storage
 - Minimize required memory \rightarrow 1.6 Bits / Operand

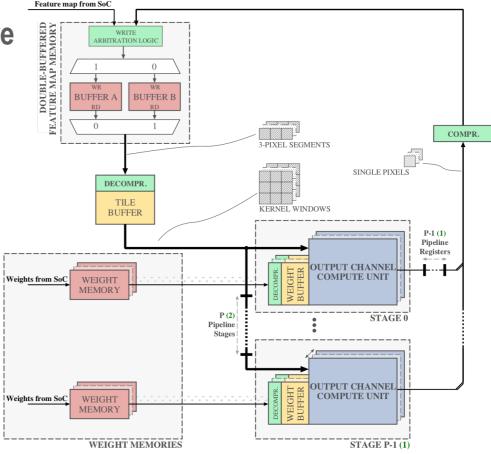


Completely unrolled compute architecture

- Limit maximal number of channels
- One compute unit per channel
- Local storage minimizes data movement
- Compressed ternary storage
 - Minimize required memory \rightarrow 1.6 Bits / Operand
- Very light pipelining
 - Keep everything as close to combinational as possible
 - Minimize clocking overheads
 - Use registers to silence unused units



- Completely unrolled compute architecture
 - Limit maximal number of channels
 - One compute unit per channel
 - Local storage minimizes data movement
- Compressed ternary storage
 - Minimize required memory \rightarrow 1.6 Bits / Operand
- Very light pipelining
 - Keep everything as close to combinational as possible
 - Minimize clocking overheads
 - Use registers to silence unused units
- Dedicated weight & feature map memory
 - Large enough to store worst-case feature maps + weights
 - I/O is extremely expensive



Implementation

- CUTIE is highly parametrizable
 - Channels, kernel shapes, pipeline depth, memory sizes, ...

Configuration parameters

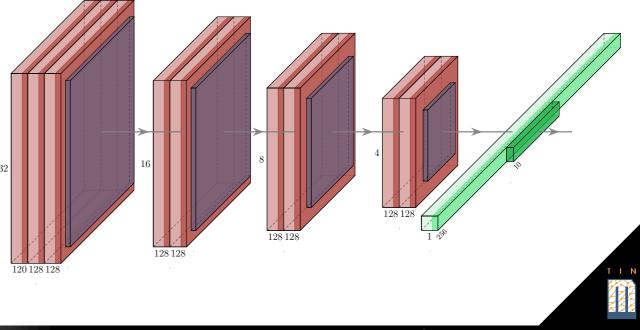
- 128 channels
- 3 x 3 kernels
- 32 x 32 pixels feature maps

Evaluated network

9 layers

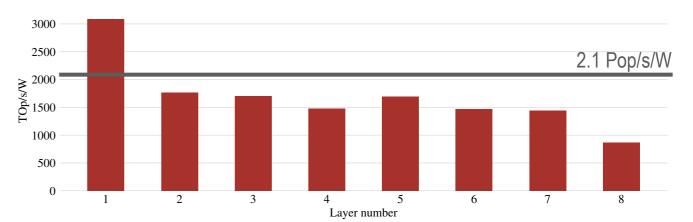
ETH zürich

• Convolution \rightarrow BatchNorm \rightarrow Hardtanh



Results – Numbers

- TSMC 7 nm:
 - Avg. energy efficiency: 2.1 POp/s/W
 - Peak energy efficiency: 3.1 POp/s/W
 - Area: 1.2 mm²
- Inference on CIFAR-10:
 - Accuracy: 88% vs. 86%^[1]
 - Clock frequency: 66 MHz
 - Average inference power: 7.8 mW
 - FPS: 13.68k
 - Energy per inference: 0.52 µJ vs 13.76 µJ^[1]
 - Peak Throughput: 16 TOp/s



[1]: Moons et al.: BinarEye: An Always-On Energy-Accuracy-Scalable Binary CNN Processor With All Memory On Chip in 28nm CMOS

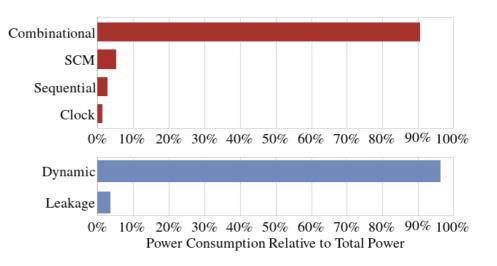
Results – Insights

Ternary > Binary:

- 50% higher energy efficiency for same network & accelerator
- 4% higher accuracy for same network architecture
- 4.8x lower energy per inference at iso-accuracy
- Fully unrolled > Iterative
 - Significantly less data movement
 - Spatial smoothness reduces switching activity by > 2x
- Training matters

Hzürich

- 1.5x higher energy efficiency with sparser networks
- Stay tuned for our tape-out in GF 22 nm!



TinyML Summit - 23.3.202²

Find our paper on arxiv: https://arxiv.org/abs/2011.01713