

ControlPULP: A RISC-V Power Controller for HPC Processors with Parallel Control-Law Computation Acceleration

Integrated Systems Laboratory (ETH Zürich)

Alessandro Ottaviano, <u>Robert Balas</u>, Giovanni Bambini, Corrado Bonfanti, Simone Benatti, Davide Rossi, Luca Benini and Andrea Bartolini

PULP Platform Open Source Hardware, the way it should be!

@pulp_platform y http://pulp-platform.org

https://www.youtube.com/pulp_platform

- Energy-efficiency is getting growing attention in the HPC field
 - Top500 leading supercomputer ORNL's Frontier leads Green500
 - **150x energy-efficiency** improvement in the last 15 vears
 - Cutting-edge cooling systems and advanced power management
- System-level power and thermal management for HPC
 - Crucial matter in the many-core era of computing systems
 - Need for fine-grained, workload-aware dynamic power management

1 G. Bambini et al., "An Open-Source Scalable Thermal and Power Controller for HPC Processors", 2020

- Existing commercial power controller are built around single-core MCU
 - Intel PCU, ARM MCP/SCP, AMD SMU, IBM OCC
 - Lack of scalability to face the ever-increasing number of controlled cores in single-die and chiplet-based modern chip

Need for a scalable power controller solution

- ControlPULP: first RISC-V based, multi-core power controller
 - Complete HW/SW platform, to be open-sourced soon
 - Implements reactive control
 - Achieves about **5x speedup** in multi-core mode with said policy

ETH zürich ALMA MATER STUDIORUM Università di Bologna

- Scalable architecture:
 - **Multi-core** cluster with private FPU (float16, bfloat, float32)
 - DMA for 2-D strided access from PVT sensor registers

Predictable architecture:

- Cache less system
- Constant access time to scratchpad memories
- Manager core has dedicated banks for data and instructions
- Platform level interrupt controller (RISC-V PLIC)

- Industry standard power management interfaces:
 - PMBUS/AVSBUS: Voltage Regulators control
 - SPI: Inter-socket communication (Multi ControlPULP)
 - ACPI/MCTP: Motherboard/BMC interface (OpenBMC)

Mem

С

Manager core

С

Mem

Cluster accelerator

С

 \cap

С

С

С

С

• SCMI: OS governors and telemetry

In-band

Out-of-

band

on-die

off-die

P B

Power Control Policy

ETH zürich alma mater studiorum università di bologna

Power Control Policy

- Two main control tasks:
 - Periodic Control Task
 - Power dispatching layer
 - Thermal control
 - Power Control Task

ETH zürich

- Voltage rails power consumption
- BMC communication

ALMA MATER STUDIORUN Università di Bologni

7/2/2022

ETH zürich

Single-core subsystem

- 32-bit CV32E40P
- 512 KiB scratchpad memory .
- Executes the main control policy routine .
- Offloads tasks to accelerator cluster

ALMA MATER STUDIORUM Università di Bologna

ETH zürich ALMA MATER STUDIORUM Università di Bologna

P D P

Software stack

- Complete software stack
 - Real-time operation system, FreeRTOS

ControlPULP SW stack

Software stack

- Complete software stack
 - Real-time operation system, FreeRTOS

ControlPULP SW stack

7/2/2022

- Platform area
 - GF22 synthesis: one manager core, one cluster, 512KiB + 64KiB@500 MHz, TT
 - Total Area of 9.1 MGE
 - Estimated < 1% of a HPC processor die in modern technology node

Table 1: ControlPULP post-synthesis area breakdown on GF22FDX technology.

\mathbf{Unit}	Area	Area	Percentage
	$[\mathbf{mm}^2]$	[kGE]	[%]
Cluster unit	0.467	2336.7	25.5
SoC unit	0.135	675.9	7.39
L1 SRAM	0.119	595.7	6.51
L2 SRAM	1.108	5542.1	60.6
Total	1.830	9150.3	100

P b p

- Standalone RTL evaluation
 - NoC latency and controlled system are simplified in a testbench environment
 - Evaluate: multi-core speedup (performance) and interrupt handling reactiveness (latency)

- Standalone RTL evaluation
 - Multi-core and DMA centric PCF speedup: about 5x faster than singlecore execution for 72 cores

- Standalone RTL evaluation
 - SCMI response deferring mechanism with FreeRTOS
 - Let the OS schedule the response in the interrupt routine (vs. tailored SW in ARM SCP)

Location	Increment Sum	
	[cycles]	[cycles]
PLIC input to output	2	2
CLINT input to core	7	9
Jump in vector table to PLIC handler	2	11
Save caller save regs (addi $+$ 15 regs)	17	28
Claim PLIC interrupt (read id)	8	36
Compute and load PLIC handler address	8	44
Jump to PLIC handler address	2	46
Summary	-	46

Conclusions

- First RISC-V power controller for HPC systems \bullet
- Complete HW/SW platform to be open-sourced
- Scalable multi-core accelerator cluster to achieve 5x on control policy with low area overhead (about 1% of a modern HPC processor)

Future work

- Fast-interrupt handling and predictability exploration
- Explore Advanced predictive control policy with HW acceleration
- Improve verification environment: FPGA-based Hardware-In-The-Loop emulation

Thank you for your attention

7/2/2022