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STATUS QUO

- Distinction between IPs/chips 

- No transitive dependencies 

- IPs don’t know their deps 

- Chips must list all deps 

- Tool embedded into chip repository 

- Mixes: 

- IPs worked on by the user 

- IPs checked out by the tool

IPApprox / iptools Bender
- A replacement tool to fix these issues 

- A joint effort by: Andreas Kurth, Francesco 
Conti, Stefan Mach, Florian Zaruba 

- Repository and binaries: 
github.com/fabianschuiki/bender 

- Or use cargo to build it 

- Or build it yourself:

A SHOT AT SOMETHING NEW

> git clone <url> bender 
> cd bender 
> cargo install

> cargo install bender
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THE WISHLIST
- Transitive dependencies

- Tier-based, hands-off, opt-in policy 

Tier 1: Resolve package dependencies 

Tier 2: Collect source files 

Tier 3: Feed the tools

- No central registry

- Tailored to ASIC flow 

- Ultra conservative in updating IPs 

- Reproducible builds

- Written in compiled language for static checks

Design Goals
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- IPs cannot declare their dependencies 

- no standalone build for IPs

tosca tosca-cluster

riscv

axi

axi_slice

common_cells

tosca

tosca-cluster

axiaxi_sliceriscv

common_cells

Current Bender

Tier 1
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# Bender.yml 
axi:       master 
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REPRODUCIBLE BUILDS
- Make sure you know exactly what 

dependency versions were used for 
tape out

- Software faces this problem as well 
(e.g. composer, cargo, etc.)

- Solution: Use a lock file! 

- Tracks exact hash of each 
dependency

- Dependencies only update … 

- to resolve version conflicts 

- when you ask for it

lock files

Manifest Lock File

# Bender.yml 
axi:       master 
axi_slice: master 
axi_node:  v1.0.1 
riscv:     fixes 
axi2mem:   master 
mem2axi:   34e598c 
jtag:      master

# Bender.lock 
axi:       d1a671e 
axi_slice: f2e4abb 
axi_node:  ac692ad 
riscv:     352a9c6 
axi2mem:   ead844f 
mem2axi:   34e598c 
jtag:      2b5a6ca

> bender update 
> bender update axi_slice
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DEPENDENCY RESOLUTION

- Go through each dependency, determine which version to use 

- Do the same for dependencies of dependencies, …

- This is the tricky part

- Semantic versioning helps here: 

- Dependencies specified with a range of compatible versions 

- Can make a table of available versions and start crossing out

- Implemented as backtracking algorithm

Overview

As a hardware developer, you 

don’t w
ant to do this!



DEPENDENCY RESOLUTION Simple Example

A

B C

D

v1.0 v1.1

v1.1



DEPENDENCY RESOLUTION Simple Example

A

B C

D

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph



DEPENDENCY RESOLUTION Simple Example

A

B C

D

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible



DEPENDENCY RESOLUTION Simple Example

A

B C

D

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0
v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0
v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

D

v1.2

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

D

v1.2

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

D

v1.2

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly



DEPENDENCY RESOLUTION Simple Example

A

B C

D

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0
v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0
v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2

E

v1.0



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2

E

v1.0



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2

E

v1.0



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2

E

v1.0



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2

E

v1.0



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2

E

v1.0



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2

E

v1.0



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2

E

v1.0



DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2 
v1.2: v1

E

v1.0

≤v1.2

E

v1.0



SOURCE FILES
- We have established dependency tracking as first tier

Manifest



SOURCE FILES
- We have established dependency tracking as first tier

- Let’s track source files as well

Manifest

# Bender.yml 
dependencies: 
  … 
sources: 
  - src/axi_pkg.sv 
  - src/axi_intf.sv 
  - src/axi2mem.sv 
  - src/mem2axi.sv



SOURCE FILES
- We have established dependency tracking as first tier

- Let’s track source files as well

- Allow for groups, include dirs, defines

Manifest

# Bender.yml 
dependencies: 
  … 
sources: 
  - src/axi_pkg.sv 
  - src/axi_intf.sv 
  - src/axi2mem.sv 
  - src/mem2axi.sv

# Bender.yml 
… 
sources: 
  - src/axi_pkg.sv 
  - include_dirs: 
      - src/include 
    defines: 
      FPGA_EMUL: 1 
      SKIP_TRACE: 0 
    files: 
      - src/axi_intf.sv 
      - src/axi2mem.sv 
      - src/mem2axi.sv
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SOURCE FILES
- Each dependency declares its source files

- Build a compilation recipe: 

- Topologically sort the dependency graph 
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SOURCE FILES
- Each dependency declares its source files

- Build a compilation recipe: 

- Topologically sort the dependency graph 

- Concatenate source files in that order

Topological Ordering

Tier 2

0

1 2

2 3

1 1

2

2 3

- E/top.sv 
- E/pkg.sv 
- C/foo.vhd 
- C/bar.vhd 
- D/ctrl.sv 
- D/datapath.sv 
- D/export.sv 
- B/top.sv 
- A/padframe.sv 
- A/top.sv

> bender sources
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SOURCE FILES
- Each dependency declares its source files

- Build a compilation recipe: 

- Topologically sort the dependency graph 

- Concatenate source files in that order

Topological Ordering

Tier 2

0

1 2

2 3

1 1

2

2 3

- E/top.sv 
- E/pkg.sv 
- C/foo.vhd 
- C/bar.vhd 
- D/ctrl.sv 
- D/datapath.sv 
- D/export.sv 
- B/top.sv 
- A/padframe.sv 
- A/top.sv

> bender sources

Don’t want to do this by hand!
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TARGETS
- We have the same source files for …

- … different technologies: 

- ASIC (gf22, umc65, tsmc45, smic130, etc.) 

- FPGA (xilinx, altera)

- … different use cases: 

- RTL simulation 

- RTL synthesis 

- Post-synthesis simulation 

- Post-layout simulation 

- Linting

sources: 
  - src/queue.sv 
  - target: fpga 
    files: 
      - src/fifo_fpga.sv 
  - target: not(fpga) 
    files: 
      - src/fifo_generic.sv

Target Syntax:
Names:  fpga, asic, umc65 
AND:    all(fpga, xilinx) 
OR:     any(fpga, asic) 
NOT:    not(fpga)



EXAMPLE
- Let’s make a simple package without dependencies:

Common Cells

# Bender.yml 
package: 
  name: common_cells 
  author: [“John Doe <john@doe.com>"] 

sources: 
  - src/generic_fifo.sv 
  - src/round_robin.sv 
  - src/leading_zero.sv

> tree 
Bender.yml 
LICENSE 
README.md 
src/ 
  generic_fifo.sv 
  round_robin.sv 
  leading_zero.sv

common_cells



EXAMPLE
- A RISC-V core that depends on a few other repositories:

RISC-V core

# Bender.yml 
package: 
  name: riscv 
  author: [“John Doe <john@doe.com>"] 
dependencies: 
  common_cells: { git: “…/common_cells.git”, version: 1.0.2 } 
  tech_cells: { git: “…/tech_cells.git”, version: 0.5.3 } 
sources: 
  - src/riscv_core.sv 
  - src/riscv_ctrl.sv

> tree 
Bender.yml 
LICENSE 
README.md 
src/ 
  riscv_core.sv 
  riscv_ctrl.sv

common_cells

riscv

tech_cells



EXAMPLE
- A chip repository that will be taped out 

- Before: Put Bender.lock in .gitignore 

- Here: Commit Bender.lock to get reproducible builds!

An entire chip

tosca

tosca-cluster

riscv axiaxi_slice

common_cells

# Bender.yml 
package: 
  name: tosca 
  author: [“John Doe <john@doe.com>"] 
dependencies: 
  tosca-cluster: { git: … } 
  axi: { git: … } 
  axi_slice: { git: … } 
sources: 
  - src/top.sv 
  - src/padframe.sv

> tree 
Bender.yml 
Bender.lock 
LICENSE 
README.md 
src/ 
  top.sv 
  padframe.sv



FEEDING THE TOOLS
- We have all source files for an entire dependency graph.

Tier 3



FEEDING THE TOOLS
- We have all source files for an entire dependency graph.

- We need to feed many tools (different from software): 

- vsim 
- ncsim 
- synopsys 
- genus 
- spyglass 
- vivado 
- quartus

Tier 3



FEEDING THE TOOLS
- We have all source files for an entire dependency graph.

- We need to feed many tools (different from software): 

- vsim 
- ncsim 
- synopsys 
- genus 
- spyglass 
- vivado 
- quartus

- Can be done manually

Tier 3

> bender sources 
{ 
  “include_dirs”: […], 
  “defines”: {…}, 
  “files”: […], 
}



FEEDING THE TOOLS
- We have all source files for an entire dependency graph.

- We need to feed many tools (different from software): 

- vsim 
- ncsim 
- synopsys 
- genus 
- spyglass 
- vivado 
- quartus

- Can be done manually

- Or have Bender do it for you…

Tier 3

> bender sources 
{ 
  “include_dirs”: […], 
  “defines”: {…}, 
  “files”: […], 
}
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- Bender can maintain tool scripts for you

- Currently supported targets: 

- Synopsys Design Compiler “analyze” scripts 

- QuestaSim compile scripts

- Experimental support for edalize
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SCRIPT GENERATION
- Bender can maintain tool scripts for you

- Currently supported targets: 

- Synopsys Design Compiler “analyze” scripts 

- QuestaSim compile scripts

- Experimental support for edalize

- Scripts can be checked into version control 

- Takes bender out of the EDA loop 

- Can share environment with collaborators that 
do not have bender installed

> bender script vsim > compile.tcl

# compile.tcl 
vlog +define+TARGET_VSIM \ 
    “src/riscv_top.sv” \ 
    …

> bender script synopsys > analyze.tcl

# analyze.tcl 
lappend search_path "src/include" 
analyze -format sv -define { \ 
    TARGET_SYNOPSYS \ 
    TARGET_SYNTHESIS \ 
} [list \ 
    “src/riscv_top.sv” \ 
]

Opt-in!
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PLUGINS
- Plugins allow Bender to be extended easily with custom commands 

- A regular dependency 

- Offers commands to the user: 

- can be simple scripts 

- can be entire executables

# Bender.yml 
package: 
  name: bender-vsim 
  author: [“John Doe <john@doe.com>"] 

plugins: 
  vsim: “do_stuff.sh”

#!/bin/bash 
# do_stuff.sh 

SOURCES=`$BENDER sources` 
for FILE in $SOURCES; do 
  vlog-10.6b $FILE 
done 

echo “run -all” | vsim-10.6b -c



TESTING One-button testing

Future!



TESTING
- I would like testing to be one button away

One-button testing

> bender test --all 
All 4 tests passed.

Future!



TESTING
- I would like testing to be one button away

- Can be implemented as another plugin: 

1. Compilation tests with installed tools 

➤ vsim/ncsim 

➤ synopsys/genus 

➤ spyglass/verilator 

➤ vivado 

2. Run unit/regression tests 

➤ vsim/ncsim

One-button testing

> bender test --all 
All 4 tests passed.

Future!



TESTING
- I would like testing to be one button away

- Can be implemented as another plugin: 

1. Compilation tests with installed tools 

➤ vsim/ncsim 

➤ synopsys/genus 

➤ spyglass/verilator 

➤ vivado 

2. Run unit/regression tests 

➤ vsim/ncsim

One-button testing

> bender test --all 
All 4 tests passed.

Ensures that IP is 
compatible with 
different tools.

Future!



TESTING
- I would like testing to be one button away

- Can be implemented as another plugin: 

1. Compilation tests with installed tools 

➤ vsim/ncsim 

➤ synopsys/genus 

➤ spyglass/verilator 

➤ vivado 

2. Run unit/regression tests 

➤ vsim/ncsim

- Can be easily integrated into CI

One-button testing

> bender test --all 
All 4 tests passed.

Ensures that IP is 
compatible with 
different tools.

Future!



TESTING
- I would like testing to be one button away

- Can be implemented as another plugin: 

1. Compilation tests with installed tools 

➤ vsim/ncsim 

➤ synopsys/genus 

➤ spyglass/verilator 

➤ vivado 

2. Run unit/regression tests 

➤ vsim/ncsim

- Can be easily integrated into CI

One-button testing

> bender test --all 
All 4 tests passed.

# Bender.yml 
package: 
  name: bender-vsim 
  author: [“John Doe <john@doe.com>"] 

test: 
  compile: [vsim, vivado, synopsys] 
  benches: 
    - test/tb_one.sv 
    - test/tb_two.sv 
  cases: 
    a: [tb_one, NUM_MASTER=[1,2,3]], 
    b: [tb_two, NUM_SLAVE=[3,4,9]],

Ensures that IP is 
compatible with 
different tools.

Future!



REGISTRY for convenience and open source releases

Future!



REGISTRY
- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

for convenience and open source releases

Future!



REGISTRY
- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

- Typing Git URLs for dependencies is tedious and error prone:

for convenience and open source releases

common_cells: { git: “…/common_cells.git”, version: 1.0.2 } 
tech_cells:   { git: “…/tech_cells.git”,   version: 0.5.3 } 
axi:          { git: “…/axi.git”,          version: 0.2   }

Future!



REGISTRY
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- Typing Git URLs for dependencies is tedious and error prone:
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REGISTRY
- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

- Typing Git URLs for dependencies is tedious and error prone:

- Solution: Create a registry! 

- Simply a file on a web server which lists Git repositories 

- Can have multiple registries (pulp-restricted vs. pulp-open)

- Helps with open-source releases

for convenience and open source releases

common_cells: { git: “…/common_cells.git”, version: 1.0.2 } 
tech_cells:   { git: “…/tech_cells.git”,   version: 0.5.3 } 
axi:          { git: “…/axi.git”,          version: 0.2   }

common_cells: 1.0.2 
tech_cells:   0.5.3 
axi:          0.2

Future!
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I HATE YOUR TOOL!

- Bazel

- The award-winning FuseSoC

- npm?

- others?

Alternatives



FUTURE WORK

- Integration with FuseSoC/edalize? 🙂 

- Add support for more tools 

- Features 

- Automation/conventions for unit tests
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CONCLUSION

Bender is here to help you!
1. Transitive dependency resolution

2. Source file ordering and management

3. Registry and feeding the tools



Thanks!
https://github.com/fabianschuiki/bender

> git clone <url> bender 
> cd bender 
> cargo install

and

> cargo install bender

and


