
BENDER
A dependency management tool for hardware design projects

Fabian Schuiki

STATUS QUO

- Distinction between IPs/chips

- No transitive dependencies

- IPs don’t know their deps

- Chips must list all deps

- Tool embedded into chip repository

- Mixes:

- IPs worked on by the user

- IPs checked out by the tool

IPApprox / iptools

STATUS QUO

- Distinction between IPs/chips

- No transitive dependencies

- IPs don’t know their deps

- Chips must list all deps

- Tool embedded into chip repository

- Mixes:

- IPs worked on by the user

- IPs checked out by the tool

IPApprox / iptools Bender
- A replacement tool to fix these issues

- A joint effort by: Andreas Kurth, Francesco
Conti, Stefan Mach, Florian Zaruba

- Repository and binaries: 
github.com/fabianschuiki/bender

- Or use cargo to build it

- Or build it yourself:

A SHOT AT SOMETHING NEW

> git clone <url> bender
> cd bender
> cargo install

> cargo install bender

THE WISHLIST Design Goals

THE WISHLIST
- Transitive dependencies

Design Goals

THE WISHLIST
- Transitive dependencies

- Tier-based, hands-off, opt-in policy

Tier 1: Resolve package dependencies

Tier 2: Collect source files

Tier 3: Feed the tools

Design Goals

THE WISHLIST
- Transitive dependencies

- Tier-based, hands-off, opt-in policy

Tier 1: Resolve package dependencies

Tier 2: Collect source files

Tier 3: Feed the tools

- No central registry

Design Goals

THE WISHLIST
- Transitive dependencies

- Tier-based, hands-off, opt-in policy

Tier 1: Resolve package dependencies

Tier 2: Collect source files

Tier 3: Feed the tools

- No central registry

- Tailored to ASIC flow

- Ultra conservative in updating IPs

- Reproducible builds

Design Goals

THE WISHLIST
- Transitive dependencies

- Tier-based, hands-off, opt-in policy

Tier 1: Resolve package dependencies

Tier 2: Collect source files

Tier 3: Feed the tools

- No central registry

- Tailored to ASIC flow

- Ultra conservative in updating IPs

- Reproducible builds

- Written in compiled language for static checks

Design Goals

TRANSITIVE DEPENDENCIES
- IPs cannot declare their dependencies

- no standalone build for IPs

Tier 1

TRANSITIVE DEPENDENCIES
- IPs cannot declare their dependencies

- no standalone build for IPs

tosca

Tier 1

TRANSITIVE DEPENDENCIES
- IPs cannot declare their dependencies

- no standalone build for IPs

tosca tosca-cluster

Tier 1

TRANSITIVE DEPENDENCIES
- IPs cannot declare their dependencies

- no standalone build for IPs

tosca tosca-cluster

riscv

Tier 1

TRANSITIVE DEPENDENCIES
- IPs cannot declare their dependencies

- no standalone build for IPs

tosca tosca-cluster

riscv

axi

Tier 1

TRANSITIVE DEPENDENCIES
- IPs cannot declare their dependencies

- no standalone build for IPs

tosca tosca-cluster

riscv

axi

axi_slice

Tier 1

TRANSITIVE DEPENDENCIES
- IPs cannot declare their dependencies

- no standalone build for IPs

tosca tosca-cluster

riscv

axi

axi_slice

common_cells

Tier 1

TRANSITIVE DEPENDENCIES
- IPs cannot declare their dependencies

- no standalone build for IPs

tosca tosca-cluster

riscv

axi

axi_slice

common_cells

Current Bender

Tier 1

TRANSITIVE DEPENDENCIES
- IPs cannot declare their dependencies

- no standalone build for IPs

tosca tosca-cluster

riscv

axi

axi_slice

common_cells

tosca

Current Bender

Tier 1

TRANSITIVE DEPENDENCIES
- IPs cannot declare their dependencies

- no standalone build for IPs

tosca tosca-cluster

riscv

axi

axi_slice

common_cells

tosca

tosca-cluster

axiaxi_slice

Current Bender

Tier 1

TRANSITIVE DEPENDENCIES
- IPs cannot declare their dependencies

- no standalone build for IPs

tosca tosca-cluster

riscv

axi

axi_slice

common_cells

tosca

tosca-cluster

axiaxi_sliceriscv

common_cells

Current Bender

Tier 1

SEMANTIC VERSIONING

SEMANTIC VERSIONING
- The problem with transitive dependencies:

riscv

axi_slice

common_cells

382371f

63e1b76

SEMANTIC VERSIONING
- The problem with transitive dependencies:

riscv

axi_slice

common_cells

382371f

63e1b76

Are these commits compatible?

Which one do we pick?

SEMANTIC VERSIONING
- The problem with transitive dependencies:

- The solution: Semantic Versioning (semver.org)

riscv

axi_slice

common_cells

382371f

63e1b76

Are these commits compatible?

Which one do we pick?

1.2.3
Major Version

Minor Version

Patch Version

- Increment major version on
breaking changes

- Increment minor version on
backwards-compatible changes

- Increment patch version otherwise

Be careful with HDLs… many changes
are breaking.

SEMANTIC VERSIONING
- The problem with transitive dependencies:

- The solution: Semantic Versioning (semver.org)

riscv

axi_slice

common_cells

382371f

63e1b76

Are these commits compatible?

Which one do we pick?

1.2.3
Major Version

Minor Version

Patch Version

- Increment major version on
breaking changes

- Increment minor version on
backwards-compatible changes

- Increment patch version otherwise

Be careful with HDLs… many changes
are breaking.

REPRODUCIBLE BUILDS
- Make sure you know exactly what

dependency versions were used for
tape out

lock files

REPRODUCIBLE BUILDS
- Make sure you know exactly what

dependency versions were used for
tape out

- Software faces this problem as well
(e.g. composer, cargo, etc.)

lock files

REPRODUCIBLE BUILDS
- Make sure you know exactly what

dependency versions were used for
tape out

- Software faces this problem as well
(e.g. composer, cargo, etc.)

- Solution: Use a lock file!

- Tracks exact hash of each
dependency

lock files

Manifest Lock File

Bender.yml
axi: master
axi_slice: master
axi_node: v1.0.1
riscv: fixes
axi2mem: master
mem2axi: 34e598c
jtag: master

Bender.lock
axi: d1a671e
axi_slice: f2e4abb
axi_node: ac692ad
riscv: 352a9c6
axi2mem: ead844f
mem2axi: 34e598c
jtag: 2b5a6ca

REPRODUCIBLE BUILDS
- Make sure you know exactly what

dependency versions were used for
tape out

- Software faces this problem as well
(e.g. composer, cargo, etc.)

- Solution: Use a lock file!

- Tracks exact hash of each
dependency

- Dependencies only update …

- to resolve version conflicts

- when you ask for it

lock files

Manifest Lock File

Bender.yml
axi: master
axi_slice: master
axi_node: v1.0.1
riscv: fixes
axi2mem: master
mem2axi: 34e598c
jtag: master

Bender.lock
axi: d1a671e
axi_slice: f2e4abb
axi_node: ac692ad
riscv: 352a9c6
axi2mem: ead844f
mem2axi: 34e598c
jtag: 2b5a6ca

> bender update
> bender update axi_slice

DEPENDENCY RESOLUTION Overview

DEPENDENCY RESOLUTION

- Go through each dependency, determine which version to use

- Do the same for dependencies of dependencies, …

Overview

DEPENDENCY RESOLUTION

- Go through each dependency, determine which version to use

- Do the same for dependencies of dependencies, …

- This is the tricky part

Overview

DEPENDENCY RESOLUTION

- Go through each dependency, determine which version to use

- Do the same for dependencies of dependencies, …

- This is the tricky part

- Semantic versioning helps here:

- Dependencies specified with a range of compatible versions

- Can make a table of available versions and start crossing out

Overview

DEPENDENCY RESOLUTION

- Go through each dependency, determine which version to use

- Do the same for dependencies of dependencies, …

- This is the tricky part

- Semantic versioning helps here:

- Dependencies specified with a range of compatible versions

- Can make a table of available versions and start crossing out

- Implemented as backtracking algorithm

Overview

DEPENDENCY RESOLUTION

- Go through each dependency, determine which version to use

- Do the same for dependencies of dependencies, …

- This is the tricky part

- Semantic versioning helps here:

- Dependencies specified with a range of compatible versions

- Can make a table of available versions and start crossing out

- Implemented as backtracking algorithm

Overview

As a hardware developer, you

don’t w
ant to do this!

DEPENDENCY RESOLUTION Simple Example

A

B C

D

v1.0 v1.1

v1.1

DEPENDENCY RESOLUTION Simple Example

A

B C

D

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

DEPENDENCY RESOLUTION Simple Example

A

B C

D

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

DEPENDENCY RESOLUTION Simple Example

A

B C

D

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0
v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0
v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

D

v1.2

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

D

v1.2

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.1

v1.0

C

v1.1

v1.0

D

v1.2

v1.1

v1.0

v1.0 v1.1

v1.1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A

B C

D

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0
v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0
v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

E

v1.0

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

E

v1.0

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

E

v1.0

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

E

v1.0

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

E

v1.0

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

E

v1.0

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

E

v1.0

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

E

v1.0

DEPENDENCY RESOLUTION Simple Example

A

B C

D

A

v1.0

B

v1.3

v1.2

v1.1

v1.0

C

v1.1

v1.0

D

v2.0

v1.0

v1.1 v1.1

v1.3: v2
v1.2: v1

E

v1.0

≤v1.2

E

v1.0

SOURCE FILES
- We have established dependency tracking as first tier

Manifest

SOURCE FILES
- We have established dependency tracking as first tier

- Let’s track source files as well

Manifest

Bender.yml
dependencies:
 …
sources:
 - src/axi_pkg.sv
 - src/axi_intf.sv
 - src/axi2mem.sv
 - src/mem2axi.sv

SOURCE FILES
- We have established dependency tracking as first tier

- Let’s track source files as well

- Allow for groups, include dirs, defines

Manifest

Bender.yml
dependencies:
 …
sources:
 - src/axi_pkg.sv
 - src/axi_intf.sv
 - src/axi2mem.sv
 - src/mem2axi.sv

Bender.yml
…
sources:
 - src/axi_pkg.sv
 - include_dirs:
 - src/include
 defines:
 FPGA_EMUL: 1
 SKIP_TRACE: 0
 files:
 - src/axi_intf.sv
 - src/axi2mem.sv
 - src/mem2axi.sv

SOURCE FILES
- Each dependency declares its source files

Topological Ordering

Tier 2

SOURCE FILES
- Each dependency declares its source files

- Build a compilation recipe:

- Topologically sort the dependency graph

- Concatenate source files in that order

Topological Ordering

Tier 2

A

B C

D E

SOURCE FILES
- Each dependency declares its source files

- Build a compilation recipe:

- Topologically sort the dependency graph

- Concatenate source files in that order

Topological Ordering

Tier 2

A

B C

D E

SOURCE FILES
- Each dependency declares its source files

- Build a compilation recipe:

- Topologically sort the dependency graph

- Concatenate source files in that order

Topological Ordering

Tier 2

0

1 2

2 3

1 1

2

2 3

A

B C

D E

SOURCE FILES
- Each dependency declares its source files

- Build a compilation recipe:

- Topologically sort the dependency graph

- Concatenate source files in that order

Topological Ordering

Tier 2

0

1 2

2 3

1 1

2

2 3 > bender sources

A

B C

D E

SOURCE FILES
- Each dependency declares its source files

- Build a compilation recipe:

- Topologically sort the dependency graph

- Concatenate source files in that order

Topological Ordering

Tier 2

0

1 2

2 3

1 1

2

2 3

- E/top.sv
- E/pkg.sv
- C/foo.vhd
- C/bar.vhd
- D/ctrl.sv
- D/datapath.sv
- D/export.sv
- B/top.sv
- A/padframe.sv
- A/top.sv

> bender sources

A

B C

D E

SOURCE FILES
- Each dependency declares its source files

- Build a compilation recipe:

- Topologically sort the dependency graph

- Concatenate source files in that order

Topological Ordering

Tier 2

0

1 2

2 3

1 1

2

2 3

- E/top.sv
- E/pkg.sv
- C/foo.vhd
- C/bar.vhd
- D/ctrl.sv
- D/datapath.sv
- D/export.sv
- B/top.sv
- A/padframe.sv
- A/top.sv

> bender sources

Don’t want to do this by hand!

TARGETS
- We have the same source files for …

TARGETS
- We have the same source files for …

- … different technologies:

- ASIC (gf22, umc65, tsmc45, smic130, etc.)

- FPGA (xilinx, altera)

TARGETS
- We have the same source files for …

- … different technologies:

- ASIC (gf22, umc65, tsmc45, smic130, etc.)

- FPGA (xilinx, altera)

- … different use cases:

- RTL simulation

- RTL synthesis

- Post-synthesis simulation

- Post-layout simulation

- Linting

TARGETS
- We have the same source files for …

- … different technologies:

- ASIC (gf22, umc65, tsmc45, smic130, etc.)

- FPGA (xilinx, altera)

- … different use cases:

- RTL simulation

- RTL synthesis

- Post-synthesis simulation

- Post-layout simulation

- Linting

sources:
 - src/queue.sv
 - target: fpga
 files:
 - src/fifo_fpga.sv
 - target: not(fpga)
 files:
 - src/fifo_generic.sv

TARGETS
- We have the same source files for …

- … different technologies:

- ASIC (gf22, umc65, tsmc45, smic130, etc.)

- FPGA (xilinx, altera)

- … different use cases:

- RTL simulation

- RTL synthesis

- Post-synthesis simulation

- Post-layout simulation

- Linting

sources:
 - src/queue.sv
 - target: fpga
 files:
 - src/fifo_fpga.sv
 - target: not(fpga)
 files:
 - src/fifo_generic.sv

Target Syntax:
Names: fpga, asic, umc65
AND: all(fpga, xilinx)
OR: any(fpga, asic)
NOT: not(fpga)

EXAMPLE
- Let’s make a simple package without dependencies:

Common Cells

Bender.yml
package:
 name: common_cells
 author: [“John Doe <john@doe.com>"]

sources:
 - src/generic_fifo.sv
 - src/round_robin.sv
 - src/leading_zero.sv

> tree
Bender.yml
LICENSE
README.md
src/
 generic_fifo.sv
 round_robin.sv
 leading_zero.sv

common_cells

EXAMPLE
- A RISC-V core that depends on a few other repositories:

RISC-V core

Bender.yml
package:
 name: riscv
 author: [“John Doe <john@doe.com>"]
dependencies:
 common_cells: { git: “…/common_cells.git”, version: 1.0.2 }
 tech_cells: { git: “…/tech_cells.git”, version: 0.5.3 }
sources:
 - src/riscv_core.sv
 - src/riscv_ctrl.sv

> tree
Bender.yml
LICENSE
README.md
src/
 riscv_core.sv
 riscv_ctrl.sv

common_cells

riscv

tech_cells

EXAMPLE
- A chip repository that will be taped out

- Before: Put Bender.lock in .gitignore

- Here: Commit Bender.lock to get reproducible builds!

An entire chip

tosca

tosca-cluster

riscv axiaxi_slice

common_cells

Bender.yml
package:
 name: tosca
 author: [“John Doe <john@doe.com>"]
dependencies:
 tosca-cluster: { git: … }
 axi: { git: … }
 axi_slice: { git: … }
sources:
 - src/top.sv
 - src/padframe.sv

> tree
Bender.yml
Bender.lock
LICENSE
README.md
src/
 top.sv
 padframe.sv

FEEDING THE TOOLS
- We have all source files for an entire dependency graph.

Tier 3

FEEDING THE TOOLS
- We have all source files for an entire dependency graph.

- We need to feed many tools (different from software):

- vsim
- ncsim
- synopsys
- genus
- spyglass
- vivado
- quartus

Tier 3

FEEDING THE TOOLS
- We have all source files for an entire dependency graph.

- We need to feed many tools (different from software):

- vsim
- ncsim
- synopsys
- genus
- spyglass
- vivado
- quartus

- Can be done manually

Tier 3

> bender sources
{
 “include_dirs”: […],
 “defines”: {…},
 “files”: […],
}

FEEDING THE TOOLS
- We have all source files for an entire dependency graph.

- We need to feed many tools (different from software):

- vsim
- ncsim
- synopsys
- genus
- spyglass
- vivado
- quartus

- Can be done manually

- Or have Bender do it for you…

Tier 3

> bender sources
{
 “include_dirs”: […],
 “defines”: {…},
 “files”: […],
}

SCRIPT GENERATION

SCRIPT GENERATION
- Bender can maintain tool scripts for you

SCRIPT GENERATION
- Bender can maintain tool scripts for you

- Currently supported targets:

- Synopsys Design Compiler “analyze” scripts

- QuestaSim compile scripts

SCRIPT GENERATION
- Bender can maintain tool scripts for you

- Currently supported targets:

- Synopsys Design Compiler “analyze” scripts

- QuestaSim compile scripts

> bender script vsim > compile.tcl

compile.tcl
vlog +define+TARGET_VSIM \
 “src/riscv_top.sv” \
 …

SCRIPT GENERATION
- Bender can maintain tool scripts for you

- Currently supported targets:

- Synopsys Design Compiler “analyze” scripts

- QuestaSim compile scripts

> bender script vsim > compile.tcl

compile.tcl
vlog +define+TARGET_VSIM \
 “src/riscv_top.sv” \
 …

> bender script synopsys > analyze.tcl

analyze.tcl
lappend search_path "src/include"
analyze -format sv -define { \
 TARGET_SYNOPSYS \
 TARGET_SYNTHESIS \
} [list \
 “src/riscv_top.sv” \
]

SCRIPT GENERATION
- Bender can maintain tool scripts for you

- Currently supported targets:

- Synopsys Design Compiler “analyze” scripts

- QuestaSim compile scripts

- Experimental support for edalize

> bender script vsim > compile.tcl

compile.tcl
vlog +define+TARGET_VSIM \
 “src/riscv_top.sv” \
 …

> bender script synopsys > analyze.tcl

analyze.tcl
lappend search_path "src/include"
analyze -format sv -define { \
 TARGET_SYNOPSYS \
 TARGET_SYNTHESIS \
} [list \
 “src/riscv_top.sv” \
]

SCRIPT GENERATION
- Bender can maintain tool scripts for you

- Currently supported targets:

- Synopsys Design Compiler “analyze” scripts

- QuestaSim compile scripts

- Experimental support for edalize

- Scripts can be checked into version control

- Takes bender out of the EDA loop

- Can share environment with collaborators that
do not have bender installed

> bender script vsim > compile.tcl

compile.tcl
vlog +define+TARGET_VSIM \
 “src/riscv_top.sv” \
 …

> bender script synopsys > analyze.tcl

analyze.tcl
lappend search_path "src/include"
analyze -format sv -define { \
 TARGET_SYNOPSYS \
 TARGET_SYNTHESIS \
} [list \
 “src/riscv_top.sv” \
]

Opt-in!

PLUGINS
- Plugins allow Bender to be extended easily with custom commands

- A regular dependency

- Offers commands to the user:

- can be simple scripts

- can be entire executables

PLUGINS
- Plugins allow Bender to be extended easily with custom commands

- A regular dependency

- Offers commands to the user:

- can be simple scripts

- can be entire executables

Bender.yml
package:
 name: bender-vsim
 author: [“John Doe <john@doe.com>"]

plugins:
 vsim: “do_stuff.sh”

PLUGINS
- Plugins allow Bender to be extended easily with custom commands

- A regular dependency

- Offers commands to the user:

- can be simple scripts

- can be entire executables

Bender.yml
package:
 name: bender-vsim
 author: [“John Doe <john@doe.com>"]

plugins:
 vsim: “do_stuff.sh”

#!/bin/bash
do_stuff.sh

SOURCES=`$BENDER sources`
for FILE in $SOURCES; do
 vlog-10.6b $FILE
done

echo “run -all” | vsim-10.6b -c

TESTING One-button testing

Future!

TESTING
- I would like testing to be one button away

One-button testing

> bender test --all
All 4 tests passed.

Future!

TESTING
- I would like testing to be one button away

- Can be implemented as another plugin:

1. Compilation tests with installed tools

➤ vsim/ncsim

➤ synopsys/genus

➤ spyglass/verilator

➤ vivado

2. Run unit/regression tests

➤ vsim/ncsim

One-button testing

> bender test --all
All 4 tests passed.

Future!

TESTING
- I would like testing to be one button away

- Can be implemented as another plugin:

1. Compilation tests with installed tools

➤ vsim/ncsim

➤ synopsys/genus

➤ spyglass/verilator

➤ vivado

2. Run unit/regression tests

➤ vsim/ncsim

One-button testing

> bender test --all
All 4 tests passed.

Ensures that IP is
compatible with
different tools.

Future!

TESTING
- I would like testing to be one button away

- Can be implemented as another plugin:

1. Compilation tests with installed tools

➤ vsim/ncsim

➤ synopsys/genus

➤ spyglass/verilator

➤ vivado

2. Run unit/regression tests

➤ vsim/ncsim

- Can be easily integrated into CI

One-button testing

> bender test --all
All 4 tests passed.

Ensures that IP is
compatible with
different tools.

Future!

TESTING
- I would like testing to be one button away

- Can be implemented as another plugin:

1. Compilation tests with installed tools

➤ vsim/ncsim

➤ synopsys/genus

➤ spyglass/verilator

➤ vivado

2. Run unit/regression tests

➤ vsim/ncsim

- Can be easily integrated into CI

One-button testing

> bender test --all
All 4 tests passed.

Bender.yml
package:
 name: bender-vsim
 author: [“John Doe <john@doe.com>"]

test:
 compile: [vsim, vivado, synopsys]
 benches:
 - test/tb_one.sv
 - test/tb_two.sv
 cases:
 a: [tb_one, NUM_MASTER=[1,2,3]],
 b: [tb_two, NUM_SLAVE=[3,4,9]],

Ensures that IP is
compatible with
different tools.

Future!

REGISTRY for convenience and open source releases

Future!

REGISTRY
- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

for convenience and open source releases

Future!

REGISTRY
- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

- Typing Git URLs for dependencies is tedious and error prone:

for convenience and open source releases

common_cells: { git: “…/common_cells.git”, version: 1.0.2 }
tech_cells: { git: “…/tech_cells.git”, version: 0.5.3 }
axi: { git: “…/axi.git”, version: 0.2 }

Future!

REGISTRY
- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

- Typing Git URLs for dependencies is tedious and error prone:

- Solution: Create a registry!

- Simply a file on a web server which lists Git repositories

- Can have multiple registries (pulp-restricted vs. pulp-open)

for convenience and open source releases

common_cells: { git: “…/common_cells.git”, version: 1.0.2 }
tech_cells: { git: “…/tech_cells.git”, version: 0.5.3 }
axi: { git: “…/axi.git”, version: 0.2 }

common_cells: 1.0.2
tech_cells: 0.5.3
axi: 0.2

Future!

REGISTRY
- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

- Typing Git URLs for dependencies is tedious and error prone:

- Solution: Create a registry!

- Simply a file on a web server which lists Git repositories

- Can have multiple registries (pulp-restricted vs. pulp-open)

- Helps with open-source releases

for convenience and open source releases

common_cells: { git: “…/common_cells.git”, version: 1.0.2 }
tech_cells: { git: “…/tech_cells.git”, version: 0.5.3 }
axi: { git: “…/axi.git”, version: 0.2 }

common_cells: 1.0.2
tech_cells: 0.5.3
axi: 0.2

Future!

I HATE YOUR TOOL! Alternatives

I HATE YOUR TOOL!

- Bazel

Alternatives

I HATE YOUR TOOL!

- Bazel

- The award-winning FuseSoC

Alternatives

I HATE YOUR TOOL!

- Bazel

- The award-winning FuseSoC

- npm?

Alternatives

I HATE YOUR TOOL!

- Bazel

- The award-winning FuseSoC

- npm?

- others?

Alternatives

FUTURE WORK

- Integration with FuseSoC/edalize? 🙂

- Add support for more tools

- Features

- Automation/conventions for unit tests

CONCLUSION

Bender is here to help you!

CONCLUSION

Bender is here to help you!
1. Transitive dependency resolution

CONCLUSION

Bender is here to help you!
1. Transitive dependency resolution

2. Source file ordering and management

CONCLUSION

Bender is here to help you!
1. Transitive dependency resolution

2. Source file ordering and management

3. Registry and feeding the tools

Thanks!
https://github.com/fabianschuiki/bender

> git clone <url> bender
> cd bender
> cargo install

and

> cargo install bender

and

