A dependency management tool for hardware design projects

Fabian Schuiki

STATUS QUO

[PApprox / iptools

- Distinction between IPs/chips
- No transitive dependencies
- IPs don’t know their deps
- Chips must list all deps
- Tool embedded into chip repository
- Mixes:
- IPs worked on by the user

- IPs checked out by the tool

STATUS QUO A SHOT AT SOMETHING NEW

IPApprox / iptools Bender
- Distinction between IPs/chips - A replacement tool to fix these issues
- No transitive dependencies - A joint effort by: Andreas Kurth, Francesco

_ IPs don’t know their deps Conti, Stefan Mach, Florian Zaruba

- Repository and binaries:

B ChlpS must list all deps github.com/fabianschuiki/bender

- Tool embedded into chip repository - Or use cargo to build it

- Mixes: > cargo install bender

- IPs worked on by the user o
- Or build it yourself:

- IPs checked out by the tool

> git clone <url> bender

> cd bender
> cargo install

THE WISH LIST Design Goals

THE WISH LIST Design Goals

- Transitive dependencies

THE WISH LIST Design Goals

- Transitive dependencies

- Tier-based, hands-off, opt-in policy

/
Q

w Tier 1: Resolve package dependencies

A\

w Tier 2: Collect source files

/_

W Tier 3: Feed the tools

THE WISHLIST

Design Goals

- Transitive dependencies

- Tier-based, hands-off, opt-in policy

/_
Q

w Tier 1: Resolve package dependencies

/_

w Tier 2: Collect source files

/_

W Tier 3: Feed the tools

- No central registry

THE WISH LIST Design Goals

- Transitive dependencies

- Tier-based, hands-off, opt-in policy

/_
J

w Tier 1: Resolve package dependencies

/_

W Tier 2: Collect source files
v¢ Tier 3: Feed the tools

- No central registry

- Tailored to ASIC flow

- Ultra conservative in updating IPs

- Reproducible builds

THE WISH LIST Design Goals

- Transitive dependencies

- Tier-based, hands-off, opt-in policy

/_
J

w Tier 1: Resolve package dependencies

/_

W Tier 2: Collect source files
yw< Tier 3: Feed the tools
- No central registry
- Tailored to ASIC flow
- Ultra conservative in updating IPs

- Reproducible builds

- Written in compiled language for static checks

TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

- -

TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

-~

TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

N]

TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

tosc | —’\-
\a
e lce

TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

tosc | —’\-
\a
e lce

TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

tosc | —’\-
\a
e lce

Current Bender

TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

tosc | —’\-
\a
e lce

Current Bender

TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

tosc | —’\-
\a
e lce

Current Bender

TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

Current Bender

SEMANTIC VERSIONING

SEMANTIC VERSIONING

- The problem with transitive dependencies:

SEMANTIC VERSIONING

- The problem with transitive dependencies:

382371f

rscy \ Are these commits compatible?

common_cells

e Which one do we pick?
axi_slice 63el1b76

SEMANTIC VERSIONING

- The problem with transitive dependencies:

iscy 382371f . .
\ Are these commits compatible?
common_cells
_— Which one do we pick?
axi_slice 63el1b76

- The solution: Semantic Versioning (semver.org)

- Increment major version on
1 2 3 breaking changes
]]

- Increment minor version on
backwards-compatible changes

Major Version Patch Version

. . - Increment patch version otherwise
Minor Version

Be careful with HDLs... many changes
are breaking.

SEMANTIC VERSIONING

- The problem with t# h
v0.3.0-2017-07-11
riscv 39
T Added ‘ompatible?
e Set of five inferable, synchronous BRAM-based memories:
_ _ _— o SyncDpRam (dual-port) Ck?
aX|_sl|ce ¢ o SyncSpRam (single-port)
o SyncSpRamBeNx32 (single-port N x 32bit with byte-wise enable)
. o SyncSpRamBeNx64 (single-port N x 64bit with byte-wise enable)
- The solution: Semai o SyncTpRam (two-port)
v0.2.3-2017-07-11 1
| Fixed
/ e src_files.yml : added missing comma at the end of the AxiToAxiLitePc entry. !
. . langes
Major Version = ve.2.2 -2017-07-11
herwise

Mino Fixed

are breaking.

REPRUDUCIBLE BUILDS lock files

- Make sure you know exactly what
dependency versions were used for
tape out

REPRUDUCIBLE BUILDS lock files

- Make sure you know exactly what
dependency versions were used for
tape out

- Software faces this problem as well
(e.g. composer, cargo, etc.)

REPRODUCIBLE BUILDS Jock files

- Make sure you know exactly what
dependency versions were used for

tape out |
Manifest - Lock File
- Software faces this problem as well |

(e.g. composer, cargo, etc.)
- Solution: Use a lock file!

- Tracks exact hash of each
dependency

REPRODUCIBLE BUILDS Jock files

- Make sure you know exactly what
dependency versions were used for

tape out

Manifest Lock File
- Software faces this problem as well

(e.g. composer, cargo, etc.)
- Solution: Use a lock file!

- Tracks exact hash of each
dependency

- Dependencies only update ...

- to resolve version conflicts

- — —

DEPENDENCY RESOLUTION Overview

DEPENDENCY RESOLUTION Overview

- Go through each dependency, determine which version to use

- Do the same for dependencies of dependencies, ...

DEPENDENCY RESOLUTION Overview

- Go through each dependency, determine which version to use
- Do the same for dependencies of dependencies, ...

- This is the tricky part

DEPENDENCY RESOLUTION Overview

- Go through each dependency, determine which version to use

- Do the same for dependencies of dependencies, ...

- This is the tricky part
- Semantic versioning helps here:

- Dependencies specified with a range of compatible versions

- Can make a table of available versions and start crossing out

DEPENDENCY RESOLUTION Overview

- Go through each dependency, determine which version to use
- Do the same for dependencies of dependencies, ...

- This is the tricky part

- Semantic versioning helps here:
- Dependencies specified with a range of compatible versions
- Can make a table of available versions and start crossing out

- Implemented as backtracking algorithm

DEPENDENCY RESOLUTION Overview

- Go through each dependency, determine which version to use
- Do the same for dependencies of dependencies, ...

- This is the tricky part

- Semantic versioning helps here:
- Dependencies specified with a rg»
- Can make a table of avaj

- Implemented as backtrack

DEPENDENCY RESOLUTION Simple Example

DEPENDENCY RESOLUTION Simple Example

A
vly \il.l
B C
lvl 1

- We don’t have a registry with the dependency graph

DEPENDENCY RESOLUTION Simple Example

A
vly \il.l
B C
lvl 1

- We don’t have a registry with the dependency graph

- Collecting graph a priori from git repositories not feasible

DEPENDENCY RESOLUTION Simple Example

A
vly \il.l
B C
lvl 1

- We don’t have a registry with the dependency graph
- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A A
vly \/Al.l
v1.0
B C
lvl 1

- We don’t have a registry with the dependency graph
- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A A
vly \il.l .I
B C
lvl 1

- We don’t have a registry with the dependency graph
- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A A B C
v1l.0 vli.1
/ \ vl.1 vl.l
B C
v1.0 v1.0
lvl 1

- We don’t have a registry with the dependency graph
- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A A B C
Vly \/A]ﬂl vl.1 vl.1
B C
v1.0 -0~
lvl 1

- We don’t have a registry with the dependency graph
- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A A B C
Ea— @ @ @
: : v1.0 aen-a
lvl 1

- We don’t have a registry with the dependency graph
- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A B
AN @ @

C
v1.0 =0~ vl. I

v1.0

- We don’t have a registry with the dependency graph
- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

A B
AN @ @

C
v1.0 =0~ vl. I

- We don’t have a registry with the dependency graph
- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

v1.1 V10

- We don’t have a registry with the dependency graph
- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly

DEPENDENCY RESOLUTION Simple Example

DEPENDENCY RESOLUTION Simple Example

DEPENDENCY RESOLUTION Simple Example

DEPENDENCY RESOLUTION Simple Example

A A B C
vli.1l vli.1
RN v1.3 vII
B C
vl.2 v1.0
vi.3: v2 \l\)
vli.2: vl ° vi.© vl.l

D E v1.0

DEPENDENCY RESOLUTION Simple Example

A A B C
vli.1 vli.1
RN v1.3 vII
B C
vl.2 o
vi.3: v2 \l\)
vli.2: vl ° vi.0 vl.l

DEPENDENCY RESOLUTION Simple Example

A A B C
AN @ @ @
B C
vl.2 40
vi.3: v2 \l\)
vli.2: vl A vi.© vl.l

DEPENDENCY RESOLUTION Simple Example

A B
AN G2 G o o

C
vl.2 16~ v1.0

vli.2: vi A ' vl.l

DEPENDENCY RESOLUTION Simple Example

A A B C D E
vli.1 vli.1
N @) @D o o
B C
vl.2 -6~ 10~
)
vi.3: v2 L\)
vli.2: vl N vi.0 vl.1

DEPENDENCY RESOLUTION Simple Example

A A B C D E
AN @ @ @ @ @
B C
vl.2 16~ 10~
)
vi.3: v2 L\)
vli.2: vl o | V9 vi.1

DEPENDENCY RESOLUTION Simple Example

A A B C D E
AN @ @ @ @ @
B C
vl.2 o= -1~
)
vi.3: v2 L\)
vli.2: vl A vi.© vl.l

DEPENDENCY RESOLUTION Simple Example

A A B C D E
vly \il.l .I : ! .I
B C
v1.2 0 -0~
)
vi.3: v2 L\)
vli.2: vl A vi.0 vl.l

DEPENDENCY RESOLUTION Simple Example

A A B C D E
vli.1 vli.1
AN e @D o
B C
vl.2 === v1.0
vi.3: v2 \l\)
vli.2: vl A vi.0 vl.1

DEPENDENCY RESOLUTION Simple Example

DEPENDENCY RESOLUTION Simple Example

vi.3: v2 L\)
vli.2: vl N ' vl.l

DEPENDENCY RESOLUTION Simple Example

vi.3: v2 Vs
vli.2: vl

SOURCE F".ES Manifest

- We have established dependency tracking as first tier

SUURCE FILES Manifest

- We have established dependency tracking as first tier

- Let’s track source files as well

SUURCE FILES Manifest

- We have established dependency tracking as first tier
- Let’s track source files as well

- Allow for groups, include dirs, defines

SUURCE FI LES Topological Ordering

- Each dependency declares its source files

SOURCE FI LES Topological Ordering

- Each dependency declares its source files

- Build a compilation recipe:
- Topologically sort the dependency graph

- Concatenate source files in that order

SOURCE FI LES Topological Ordering

- Each dependency declares its source files

- Build a compilation recipe:
- Topologically sort the dependency graph

- Concatenate source files in that order

A

N\

SOURCE FI LES Topological Ordering

- Each dependency declares its source files

- Build a compilation recipe:

- Topologically sort the dependency graph

- Concatenate source files in that order

0,
A
17 M1
4 AW
1 2
B|—2—| C

M | <« w —

SOURCE FI LES Topological Ordering

- Each dependency declares its source files

- Build a compilation recipe:

- Topologically sort the dependency graph

- Concatenate source files in that order

0,
A
17 M1
4 AW
1 2
B|—2—| C

M | <« w —

SUURCE FI LES Topological Ordering

- Each dependency declares its source files

- Build a compilation recipe:

- Topologically sort the dependency graph

- Concatenate source files in that order

_f

1”7 M1

2

1
—_—)

2 3

'4 N
I I
2 3
v \

SUURCE FI LES Topological Ordering

- Each dependency declares its source files
- Build a compilation recipe:
- Topologically sort the dependency graph

- Concatenate source files in that order

TARGETS

- We have the same source files for ...

TARGETS

- We have the same source files for ...

- ... different technologies:
- ASIC (gf22, umc65, tsmc45, smicl30, etc.)
- FPGA (xilinx, altera)

TARGETS

- We have the same source files for ...
- ... different technologies:
- ASIC (gf22, umc65, tsmc45, smicl30, etc.)
- FPGA (xilinx, altera)
- ... different use cases:
- RTL simulation
- RTL synthesis
- Post-synthesis simulation
- Post-layout simulation

- Linting

TARGETS

- We have the same source files for ...

- ... different technologies:
- ASIC (gf22, umc65, tsmc45, smicl30, etc.)
- FPGA (xilinx, altera)

- ... different use cases:

- RTL simulation - 2

- RTL synthesis
- Post-synthesis simulation
- Post-layout simulation

- Linting

TARGETS

- We have the same source files for ...

- ... different technologies:
- ASIC (gf22, umc65, tsmc45, smicl30, etc.)
- FPGA (xilinx, altera)

- ... different use cases:

- RTL simulation

- RTL synthesis Target Syntax:

- Post-synthesis simulation Names: fpga, asic, umc65
AND: all(fpga, xilinx)

- Post-layout simulation OR: any (fpga, asic)

NOT: not(fpga)
- Linting

EXAM PLE Common Cells

- Let’s make a simple package without dependencies:

Bender.yml

LICENSE

README . md

src/
generic_fifo.sv
round robin.sv
leading_zero.sv

EXAMPLE RISC-V core

- A RISC-V core that depends on a few other repositories:

Bender.yml

LICENSE

README . md

src/
riscv_core.sv
riscv_ctrl.sv

EXAM PLE An entire chip

- A chip repository that will be taped out
- Before: Put Bender.lock in .gitignore

- Here: Commit Bender.lock to get reproducible builds!

Bender.yml
Bender. lock
LICENSE
README . md
src/
top.sv
padframe.sv

FEEDING THE TOOLS

- We have all source files for an entire dependency graph.

FEEDING THE TOOLS

- We have all source files for an entire dependency graph.
- We need to feed many tools (different from software):

- VSIm

- ncsim

- Synopsys
- genus

- spyglass
- vivado

- quartus

FEEDING THE TOOLS

- We have all source files for an entire dependency graph.

- We need to feed many tools (different from software):

- VSIm
- ncsim
- Synopsys > bender sources
- genus 1
1 “include_dirs”: [..],
- SPyglass “defines”: {..},
- vivado “files”: [..],
- quartus

- Can be done manually

FEEDING THE TOOLS

- We have all source files for an entire dependency graph.

- We need to feed many tools (different from software):

- VSIm
- ncsim
- Synopsys > bender sources
- genus 1
1 “include_dirs”: [..],
- SPyglass “defines”: {..},
- vivado “files”: [..],
- quartus

- Can be done manually

- Or have Bender do it for you...

SCRIPT GENERATION

SCRIPT GENERATION

- Bender can maintain tool scripts for you

SCRIPT GENERATION

- Bender can maintain tool scripts for you
- Currently supported targets:
- Synopsys Design Compiler “analyze” scripts

- QuestaSim compile scripts

SCRIPT GENERATION

- Bender can maintain tool scripts for you
- Currently supported targets:
- Synopsys Design Compiler “analyze” scripts

- QuestaSim compile scripts

SCRIPT GENERATION

- Bender can maintain tool scripts for you

- Currently supported targets:
- Synopsys Design Compiler “analyze” scripts

- QuestaSim compile scripts

SCRIPT GENERATION

- Bender can maintain tool scripts for you

- Currently supported targets:
- Synopsys Design Compiler “analyze” scripts
- QuestaSim compile scripts

- Experimental support for edalize

SCRIPT GENERATION

- Bender can maintain tool scripts for you

- Currently supported targets:
- Synopsys Design Compiler “analyze” scripts
- QuestaSim compile scripts

- Experimental support for edalize

- Scripts can be checked into version control

- Takes bender out of the EDA loop

- Can share environment with collaborators that - .
do not have bender installed

Opt-in!

PLUGINS

- Plugins allow Bender to be extended easily with custom commands
- A regular dependency
- Offers commands to the user:

- can be simple scripts

- can be entire executables

PLUGINS

- Plugins allow Bender to be extended easily with custom commands
- A regular dependency
- Ofters commands to the user:

- can be simple scripts

- can be entire executables

PLUGINS

- Plugins allow Bender to be extended easily with custom commands

- A regular dependency

- Offers commands to the user:
- can be simple scripts

- can be entire executables

TESTI NG One-button testing

TESTI NG One-button testing

000

- I'would like testing to be one button away

> bender test —--all
ALl 4 tests passed.

TESTI NG One-button testing

000

- I'would like testing to be one button away

> bender test --all
- Can be implemented as another plugin: All 4 tests passed.

1. Compilation tests with installed tools
» vsim/ncsim
> synopsys/genus
» spyglass/verilator
» vivado
2. Run unit/regression tests

> yvsim/ncsim

TESTI NG One-button testing

000

- I'would like testing to be one button away

> bender test --all
- Can be implemented as another plugin: All 4 tests passed.

1. Compilation tests with installed tools

» ysim/ncsim

Ensures that IP is

compatible with
> spyglass/verilator different tools.

» vivado

> synopsys/genus

2. Run unit/regression tests

> yvsim/ncsim

TESTI NG One-button testing

000

- I'would like testing to be one button away

> bender test --all
- Can be implemented as another plugin: All 4 tests passed.

1. Compilation tests with installed tools

» ysim/ncsim

Ensures that IP is

compatible with
> spyglass/verilator different tools.

» vivado

> synopsys/genus

2. Run unit/regression tests
» vsim/ncsim

- Can be easily integrated into CI

TESTI NG One-button testing

000

- I'would like testing to be one button away

- Can be implemented as another plugin:

All 4 tests passed.

—

1. Compilation tests with installed tools

> vsim/ncsim

Ensures that IP is

compatible with
> spyglass/verilator different tools.

» vivado

> Synopsys/genus

2. Run unit/regression tests
» vsim/ncsim

- Can be easily integrated into CI

REG ISTRY for convenience and open source releases

REG ISTRY for convenience and open source releases

- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

REG ISTRY for convenience and open source releases

- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

- Typing Git URLs for dependencies is tedious and error prone:

REG ISTRY for convenience and open source releases

- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

- Typing Git URLs for dependencies is tedious and error prone:

-

- Solution: Create a registry!

- Simply a file on a web server which lists Git repositories

- Can have multiple registries (pulp-restricted vs. pulp-open)

REG ISTRY for convenience and open source releases

- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

- Typing Git URLs for dependencies is tedious and error prone:

|

- Solution: Create a registry!

- Simply a file on a web server which lists Git repositories

- Can have multiple registries (pulp-restricted vs. pulp-open)

—

- Helps with open-source releases

I HATE YOUR TUOL' Alternatives

I HATE YOUR TUOL' Alternatives

- Bazel

I HATE YOUR TOOL' Alternatives

- Bazel

- The award-winning FuseSoC

¥ Bazel

{Fast, Correct} - Choose two

I HATE YOUR TUOL' Alternatives

- Bazel

- The award-winning FuseSoC

@ Bazel -

{Fast, Correct} - Choose two

I HATE YOUR TUOL' Alternatives

- Bazel
- The award-winning FuseSoC

- npm?

{Fast, Correct} - Choose two - OtherS?

npm

FUTURE WORK

- Integration with FuseSoC/edalize? @
- Add support for more tools
- Features

- Automation/conventions for unit tests

CONCLUSION

000

Bender 1s here to help you!

CONCLUSION

000

Bender 1s here to help you!

1. Transitive dependency resolution

CONCLUSION

000

Bender 1s here to help you!

1. Transitive dependency resolution

2. Source file ordering and management

CONCLUSION

000

Bender 1s here to help you!

1. Transitive dependency resolution
2. Source file ordering and management

3. Registry and feeding the tools

Thanks!

https://github.com/fabianschuiki/bender

and

> cargo 1nstall bender

and

> git clone <url> bender

> cd bender
> cargo install

