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STATUS QUO A SHOT AT SOMETHING NEW

IPApprox / iptools Bender
- Distinction between IPs/chips - A replacement tool to fix these issues
- No transitive dependencies - A joint effort by: Andreas Kurth, Francesco

_ IPs don’t know their deps Conti, Stefan Mach, Florian Zaruba

- Repository and binaries:

B ChlpS must list all deps github.com/fabianschuiki/bender

- Tool embedded into chip repository - Or use cargo to build it

- Mixes: > cargo install bender

- IPs worked on by the user o
- Or build it yourself:

- IPs checked out by the tool

> git clone <url> bender

> cd bender
> cargo install
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THE WISH LIST Design Goals

- Transitive dependencies

- Tier-based, hands-off, opt-in policy

/\_
J

w Tier 1: Resolve package dependencies

/\_

W Tier 2: Collect source files
yw< Tier 3: Feed the tools
- No central registry
- Tailored to ASIC flow
- Ultra conservative in updating IPs

- Reproducible builds

- Written in compiled language for static checks



TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs



TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs




TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

- -




TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

-~




TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

N]




TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

tosc | —’\-
\a
e lce




TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

tosc | —’\-
\a
e lce




TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

tosc | —’\-
\a
e lce

Current Bender



TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

tosc | —’\-
\a
e lce

Current Bender



TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

tosc | —’\-
\a
e lce

Current Bender



TRANSITIVE DEPENDENCIES

- IPs cannot declare their dependencies

- no standalone build for IPs

Current Bender
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SEMANTIC VERSIONING

- The problem with transitive dependencies:

iscy 382371f . .
\ Are these commits compatible?
common_cells
_— Which one do we pick?
axi_slice 63el1b76

- The solution: Semantic Versioning (semver.org)

- Increment major version on
1 2 3 breaking changes
] ]

- Increment minor version on
backwards-compatible changes

Major Version Patch Version

. . - Increment patch version otherwise
Minor Version

Be careful with HDLs... many changes
are breaking.



SEMANTIC VERSIONING

- The problem with t# h
v0.3.0-2017-07-11
riscv 39
T Added ‘ompatible?
e Set of five inferable, synchronous BRAM-based memories:
_ _ _— o SyncDpRam (dual-port) Ck?
aX|_sl|ce ¢ o SyncSpRam (single-port)
o SyncSpRamBeNx32 (single-port N x 32bit with byte-wise enable)
. o SyncSpRamBeNx64 (single-port N x 64bit with byte-wise enable)
- The solution: Semai o SyncTpRam (two-port)
v0.2.3-2017-07-11 1
| Fixed
/ e src_files.yml : added missing comma at the end of the AxiToAxiLitePc entry. !
. . langes
Major Version = ve.2.2 -2017-07-11
herwise

Mino  Fixed

are breaking.
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REPRODUCIBLE BUILDS Jock files

- Make sure you know exactly what
dependency versions were used for

tape out

Manifest Lock File
- Software faces this problem as well

(e.g. composer, cargo, etc.)
- Solution: Use a lock file!

- Tracks exact hash of each
dependency

- Dependencies only update ...

- to resolve version conflicts

- — —
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DEPENDENCY RESOLUTION Overview

- Go through each dependency, determine which version to use
- Do the same for dependencies of dependencies, ...

- This is the tricky part

- Semantic versioning helps here:
- Dependencies specified with a rg»
- Can make a table of avaj

- Implemented as backtrack
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DEPENDENCY RESOLUTION Simple Example

v1.1 V10

- We don’t have a registry with the dependency graph
- Collecting graph a priori from git repositories not feasible

- “Discover” dependencies on the fly
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DEPENDENCY RESOLUTION Simple Example

vi.3: v2 Vs
vli.2: vl
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SUURCE FILES Manifest

- We have established dependency tracking as first tier
- Let’s track source files as well

- Allow for groups, include dirs, defines
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SUURCE FI LES Topological Ordering

- Each dependency declares its source files

- Build a compilation recipe:

- Topologically sort the dependency graph

- Concatenate source files in that order

_f

1”7 M1

2

1
—_—)

2 3

'4 N
I I
2 3
v \



SUURCE FI LES Topological Ordering

- Each dependency declares its source files
- Build a compilation recipe:
- Topologically sort the dependency graph

- Concatenate source files in that order
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TARGETS

-  We have the same source files for ...

- ... different technologies:
- ASIC (gf22, umc65, tsmc45, smicl30, etc.)
- FPGA (xilinx, altera)

- ... different use cases:

- RTL simulation

- RTL synthesis Target Syntax:

- Post-synthesis simulation Names: fpga, asic, umc65
AND: all(fpga, xilinx)

- Post-layout simulation OR: any (fpga, asic)

NOT: not(fpga)
- Linting



EXAM PLE Common Cells

- Let’s make a simple package without dependencies:

Bender.yml

LICENSE

README . md

src/
generic_fifo.sv
round robin.sv
leading_zero.sv




EXAMPLE RISC-V core

- A RISC-V core that depends on a few other repositories:

Bender.yml

LICENSE

README . md

src/
riscv_core.sv
riscv_ctrl.sv




EXAM PLE An entire chip

- A chip repository that will be taped out
- Before: Put Bender.lock in .gitignore

- Here: Commit Bender.lock to get reproducible builds!

Bender.yml
Bender. lock
LICENSE
README . md
src/
top.sv
padframe.sv
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FEEDING THE TOOLS

- We have all source files for an entire dependency graph.

- We need to feed many tools (different from software):

- VSIm
- ncsim
- Synopsys > bender sources
- genus 1
1 “include_dirs”: [..],
- SPyglass “defines”: {..},
- vivado “files”: [..],
- quartus

- Can be done manually

- Or have Bender do it for you...
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SCRIPT GENERATION

- Bender can maintain tool scripts for you

- Currently supported targets:
- Synopsys Design Compiler “analyze” scripts
- QuestaSim compile scripts

- Experimental support for edalize

- Scripts can be checked into version control

- Takes bender out of the EDA loop

- Can share environment with collaborators that - .
do not have bender installed

Opt-in!
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TESTI NG One-button testing

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

- I'would like testing to be one button away

- Can be implemented as another plugin:

All 4 tests passed.

—

1. Compilation tests with installed tools

> vsim/ncsim

Ensures that IP is

compatible with
> spyglass/verilator  different tools.

» vivado

> Synopsys/genus

2. Run unit/regression tests
» vsim/ncsim

- Can be easily integrated into CI
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REG ISTRY for convenience and open source releases

- Makes it easy to find existing IPs (“Has anyone created a protocol adapter?”)

- Typing Git URLs for dependencies is tedious and error prone:

|

- Solution: Create a registry!

- Simply a file on a web server which lists Git repositories

- Can have multiple registries (pulp-restricted vs. pulp-open)

—

- Helps with open-source releases
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I HATE YOUR TUOL' Alternatives

- Bazel
- The award-winning FuseSoC

- npm?

{Fast, Correct} - Choose two - OtherS?

npm



FUTURE WORK

- Integration with FuseSoC/edalize? @
- Add support for more tools
- Features

- Automation/conventions for unit tests
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CONCLUSION

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Bender 1s here to help you!

1. Transitive dependency resolution
2. Source file ordering and management

3. Registry and feeding the tools



Thanks!

https://github.com/fabianschuiki/bender

and

> cargo 1nstall bender

and

> git clone <url> bender

> cd bender
> cargo install




