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The Transformer

• Transformers are the main models driving the 
evolution of modern Artificial Intelligence

• Both in perceptive task and in generative 
applications

• However, this performance uplift comes at a 
cost

• Transformers generally use more parameters than 
previous-gen neural networks 

• Each layer of a Transformer is more complex, 
featuring multi-head self-attention (MHSA) and 
additional projections
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Why Transformers at the Edge?

• State-of-the-art models are in the order of 𝟏𝟎𝟏𝟏, 𝟏𝟎𝟏𝟐 parameters

• Edge inference is unthinkable, not even remotely near the required performance and 
memory capacity on embedded devices

• Cloud is the natural choice for these models

• Significant interest in running smaller models (𝟏𝟎𝟖, 𝟏𝟎𝟗 parameters) at the 
Edge

• Why running such models at the edge?

• Low latency applications

• Reduce wireless traffic congestion

• Improve privacy and security in GenAI applications
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A Fully Integer Transformer?

• Fully-integer CNNs are the standard 

• Quantization greatly cuts the model size

• Boosts inference speed and efficiency

• Comparable performance to non-quantized models

• What about Transformers?

• Orders of magnitude more expensive to train compared to CNNs

• Often trained on huge, non-public datasets and/or with human feedback

• Activation quantization still not mature

• Quantization is often unfeasible!

• For this reason, we will focus on the acceleration of transformers in their 
native format (BF16)
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The PULP Cluster Template

• 2-8 RISC-V digital signal processing 
cores

• Shared L1 Scratchpad Memory (Tightly 
Coupled Data Memory)

• bank interleaving to maximize available 
bandwidth in typical parallel computing 
scenarios

• 32KiB shared instruction cache

• Accelerate specific tasks through:

• ISA extensions

• Cooperative HWPE (Hardware Processing 
Engines)
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A Transformer-Ready PULP Cluster?

• 8 RI5CY 32-bit cores

• 4-stages, in-order pipeline

• Xpulp extensions (HW loops, bit 
manipulations, SIMD)

• Private FPU supporting FP32 and BF16 
formats, with 2-way SIMD support for 
BF16

• 256KiB of TCDM split among 32 banks

• A Tensor Processing Engine based on 
the RedMulE architecture
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Is GEMM Really Enough?

• Let’s run ViT-Base on the 
proposed cluster and sweep 
RedMulE’s number of CEs

• Nonlinear operations are 
approximated using the fastest 
possible method

• Huge initial gains but diminishing 
returns as we enlarge the Tensor 
Processing Engine

• Utilization as low a 31%

• Big relative contribution from 
non-GEMM operations when 
matmuls are accelerated
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The Attention Mechanism & Softmax

• Attention consists of multiple GEMMs 
+ softmaxs

• Unlike CNNs, softmax is applied multiple 
times every layer

• It is fundamental to also accelerate 
softmax if we target Transformer-
based models

• What’s the deal with this function?

• It is based on the exponential function

• It is NOT a point-to-point function
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Glibc’s Exponential Function

• How is exp normally implemented? Let’s 
have a look to glibc’s implementation…

• Look-up tables, polynomial 
approximations, double precision…

• Clearly not suitable for low-power 
applications, let alone hardware 
accelerators

• We need an alternative
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Other exp Approximations

• What about less computationally-intensive approximations?

• CORDIC

• Good accuracy and efficient

• Slow convergence

• LUT-based methods

• Perform no computation at all besides interpolation

• Costly in terms of area

• Work best with limited ranges

• Polynomial approximations

• We can build optimal approximations using Chebyshev’s polynomials

• For a good result we must limit the input range
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An Efficient Approximation – Schraudolph’s Method

• Think outside the box:

• How are floats stored?

• How do we find their value?

• Then what if add an integer the bias 
and replace the exponent with it?

• We get a perfect base-2 
exponentiation

• However:

• What about base-e exp?

→ Just multiply the input by log2 𝑒

• What if the input is not an integer?
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An Efficient Approximation – Schraudolph’s Method

• Let’s apply the same function to a 
fixed-point number

• Same process as before but we shift 
the number until the integer part 
overlaps with the exponent bits

• What happens to the result?

• The integer part is perfectly 
exponentiated

• The fractional part becomes the 
mantissa

• We get a linear interpolation of 
the 2 nearest integer powers of 2

2𝑥 ≈ 2int 𝑥 ⋅ 1 + frac 𝑥 ≔ exps 𝑥

2025/02/20 13

132

5

127

.25

.0

.25



Improving Schraudolph’s Accuracy

• In the original paper, a constant is 
added to the result, shifting the 
function to minimize the average 
error

• Comes for free in software 
implementations

• From now on we will use this function in 
software approximations

• We propose to enhance the accuracy 
of the approximation by processing 
the mantissa only

• We replace frac 𝑥 with a polynomial 

𝑃 frac 𝑥 that approximates 2frac 𝑥
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Our Proposed Enhancement (1)

• We define 𝑷 𝒙 as a piecewise 
second-order polynomial

• For 𝑥 ∈ 0,0.5 we sum a straight-line 
tangent to 2𝑥 − 1 in 0 with a parabola 
centered in 0

• For 𝑥 ∈ 0.5,1 we do as before, but the 
functions are centered in 1

• Can we simplify the second 
polynomial to make it look more like 
the first?

• YES, if we approximate 1 − 𝑥 with it’s 
one’s complement
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Our Proposed Enhancement (2)

• In practice, we replace the additive 
factors with 2 free parameters 
(𝜸𝟏,𝜸𝟐) and optimize them 
independently

• We minimize the error introduced 
by the approximation using a 
Montecarlo procedure 

• Very low final parameter bit width 

• 4 bits for 𝛼 and 𝛽

• 8 bits for 𝛾1 and 𝛾2
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Accuracy Evalutation

• Average relative error of 0.14%

• 13× decrease compared to Schraudolph’s
method

• Relative accuracy of 99.86%

• The relative error is no greater than 
0.78% 

• 3.7× decrease compared to Schraudolph
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SoftEx

• Parametric accelerator of softmax on 
BFloat16 vectors

• Organized as an HWPE

• The datapath features:

• N lanes containing a Multiplication and 
Addition Unit (MAU) and an Exponential 
Unit (EXPU)

• an Accumulator module containing a single 
pipelined FP32 Fused Multiply-Add (FMA) 
unit

• Softmax is split into: Accumulation, 
Inversion, and Normalization
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SoftEx – Accumulation 

• During this step we compute the 
denominator of softmax

• Each cycle N inputs are read, subtracted 
the maximum score, exponentiated and 
pushed into the accumulator

• To avoid a maximum search, we use an 
online normalization scheme

• Each score is subtracted the current 
maximum score

• When the maximum is updated, all partial 
sums in the accumulator are rescaled by 

𝑒oldmax−newmax
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SoftEx – Inversion

• Once all the scores have been read, we 
move to the Inversion step

• First, all partial sums in the accumulator 
are summed together

• Then, the reciprocal is computed using 2 
Newton-Raphson iterations

• How do we choose the initial estimate?

• The exponent of the reciprocal can be 
computed exactly as 2 BIAS − 1 − EXP

• The mantissa is estimated with the 

parabola 
1

2
1 − MANT 2
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SoftEx – Normalization

• In the final step, the vector is read again 
and the exponentiated values are 
multiplied by the reciprocal of the 
denominator

• The MAUs are used to both subtract the 
maximum input and normalize the 
outputs

• To fully utilize the available memory 
bandwidth during accumulation and 
normalization, the load of a new vector of 
scores and the store of a vector of 
probabilities are alternated
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Is Softmax Enough?

• If we look at the attention layer alone there are no major nonlinearities 
left

• However, there is still the feed-forward network…

• While the original Transformer employed ReLU, modern models forego 
this function in favor of more complex activation functions

• A commonly used function in high-performance models is GELU
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Gaussian Error Linear Unit

• GELU is an activation function consistently 
outperforming ReLU

• Instead of gating the input like ReLU, GELU 
weights the input by the value of the Guassian
Cumulative Distribution Function

GELU 𝑥 = 𝑥 ⋅ Φ 𝑥 = 𝑥 ⋅
1

2𝜋
න
−∞

𝑥

exp −
1

2
𝑡2 𝑑𝑡

• Again, we need an approximation of this 
function!
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Calculating GELU in Practice

• The original paper proposes 2 approximations 

GELU 𝑥 ≈ 𝑥 ⋅
1

2
1 + tanh 2/𝜋 𝑥 + 0.044715𝑥3

GELU 𝑥 ≈ 𝑥 ⋅ 𝜎 1.702𝑥

• Both tanh and sig are based on exponentials! However…

tanh 𝑥 ≐
𝑒2𝑥 − 1

𝑒2𝑥 + 1

𝜎 𝑥 ≐
1

1 + 𝑒𝑥

• They both require a division of the terms, out of the question

• Are there other approximations solely based on exponentials and basic 
arithmetic?
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Φ as a Sum of Exponentials (1)

• Let’s focus on the complementary Gaussian CDF, the Q-function

𝑄 𝑥 ≐ 1 − Φ 𝑥 =
1

2𝜋
න
𝑥

+∞

exp −
1

2
𝑡2 𝑑𝑡

• An alternative formulation of the Q-function for positive arguments is:

𝑄 𝑥 =
1

𝜋
න
0

𝜋
2
exp −

𝑥2

2sin2 𝜃
𝑑𝜃 , 𝑥 ≥ 0

• If we apply the rectangular integration formula as proposed by Chiani:

𝑄 𝑥 ≤
1

𝜋
෍

𝑖=1

𝑁

න
𝜃𝑖−1

𝜃𝑖

exp −
𝑥2

2sin2 𝜃𝑖
𝑑𝜃 =෍

𝑖=1

𝑁

𝑎𝑖𝑒
−𝑏𝑖𝑥

2
, 𝑥 ≥ 0

• We have an upper bound for Q (and 𝚽) expressed as a sum of exponentials!

• This formulation is symmetrical: for 𝑥 < 0 it evaluates Φ

• However, it is still an upper bound…
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Φ as a Sum of Exponentials (2)

• Can we turn Chiani’s result it into an approximation? 

• Yes, Tanash and Riihone propose a method to optimize the a and b parameters by 
solving an optimization problem

• Optimizes the relative error of the approximation for 𝑥 ≤ 𝑥2𝑁+1 given the rightmost extreme of the 
interval (𝑥2𝑁+1) and the number of terms (𝑁)

• The resulting approximation is optimal in a minmax sense

• Also converges quickly!
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The Extended SoftEx

• SoftEx accelerates only the sum of 
exponentials

• The remaining, simple steps are delegated 
to the cores

• Little modifications compared to the 
softmax-only version

• 2 buffers for the a and b weights and 
accumulator per lane

• The accumulators are NOT FMAs

• The accumulated value is bounded within 
the 0,0.5 range, we can use fixed points

• We just have to decide the number of bits 
to use for representing this value
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Where to Optimize the Function?

• We need an approximation that is 
accurate near 0 and just good enough far 
from it 

• After all, GELU behaves similarly to ReLU for 
𝑥 ≫ 0

• We solve the optimization problem for 
𝒙 ≤ 𝟐. 𝟖

• For 𝑥 > 2.8 the value of GELU in BF16 is 
exactly the value of the input

• For 𝑥 < −2.8 the value of GELU can be safely 
approximated with 0

• Now we have to determine the optimal 
number of bits to use in the accumulator
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How Many Bits?

• Swept both the number of bits and the number of terms and evaluated:

• Percentage of label mismatches and logits mean squared error on ViT on ImageNet1k 

• Perplexity on GPT2 on the WikiText benchmark

• Using 10 or less bits results in significant deviations from the base models

• With 11 or more bits the deviations stabilize at around 4 terms
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The Final Test System

• 8 RI5CY RISC-V cores with the Xpulp
extension and private FPU

• 256KiB TCDM split among 32 banks

• 32 KiB of shared instruction cache

• RedMulE Tensor Processing Engine 
in 24x8 computing element 
configuration

• SoftEx softmax&GELU accelerator in 
16 lanes configuration
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SoftEx – Area, Power and Performance (1)

• Cluster implemented in GlobalFoundries 12LP+ 
technology

• Benchmarked typical conditions in 2 operating 
points:

• 0.8V and 1.12GHz for maximum performance

• 0.55V and 460MHz for maximum efficiency

• SoftEx area occupation: 0.039 mm𝟐

• 3.22% of the cluster area (1.21 mm2)

• 1/6 of RedMulE’s area (0.24 mm2)

• SoftEx area dominated by the adder tree and MAUs

• Exponential units and accumulators account for only 
10.1% and 11.5% of the total, respectively
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SoftEx – Area, Power and Performance (2)

• Cluster power consumption during softmax:

• 278 mW @ 0.8V, 53.2 mW for SoftEx

• 56.1 mW @ 0.55V, 9.87 mW for SoftEx

• MAUs dominate the power consumption (24.2%)

• EXPUs  only contribute by 13.7%

• Benchmarked on activations from MobileBERT

• 6.2-10.8× faster compared to the 8 RISC-V cores using 
Schraudolph (exps)

• 15.3-26.8× less power-hungry than the best software 
implementation

• Software implementation of the algorithm (expp) on 
average 31% slower than exps
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SoftEx – Area, Power and Performance (3)

• Cluster power consumption during sum of exp

• 276 mW @ 0.8V, 50.8 mW for SoftEx

• 55.7 mW @ 0.55V, 9.46 mW for SoftEx

• Accumulators dominate the power (22%) with 
the MAUs close behind (20%), higher EXPU 
contribution compared to softmax (16%)

• GELU benchmarked on ViT’s FFN

• Software implementations use the sigmoid 
approximation

• Φ approximated with a 4-term sum of exponentials

• Even if partially performed in software, 5.11×
speedup and a 5.29× higher energy efficiency 
compared to SW
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Cluster Performance on MobileBERT’s Attention

• Bottleneck solely due to softmax

• Peak throughput of 324 GOPS

• 1.3-2.17× faster than the fastest software 
implementation

• Peak energy efficiency of 1.30 TOPS/W

• 20.5-75.4% increment compared to the 
most efficient software implementation

• Relative softmax runtime reduced by 
up to 4 times
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Cluster Performance on ViT

• Bottleneck shared between softmax
and GELU

• 310 GOPS@0.8V

• End-to-end latency of 113 ms

• 1.58× throughput increase on ViT base 
wrt software-only softmax & GELU

• Using SoftEx-assisted GELU increases 
throughput by 1.30× wrt SW GELU

• 1.34 TOPS/W@0.55V 

• 1.42× better efficiency compared to the 
approximate SW implementation
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Conclusion

• We presented a flexible acceleration template for Transformers at the 
edge, based on an 8-core RISC-V cluster augmented with:

• A 24×8 Computing Elements tensor processing engine

• SoftEx, a novel accelerator for BFloat16 softmax and GELU non-linearities

• Using SoftEx boost the system throughput by 1.58× and its energy 
efficiency by 1.42× on ViT

• 310 GOPS at 0.8V

• 1.34 TOPS/W at 0.55V

• SoftEx successfully achieves its design goal of alleviating the softmax and 
GELU bottleneck
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