
pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

Is GEMM Enough for Transformers? A Template for
Edge GenAI with Accelerated Softmax & GELU

Andrea Belano

About Me

• Received the Bachelor’s and Master’s Degree in
Computer Engineering at the University of
Bologna in 2022 and 2024 respectively

• Started a PhD in Microelectronics in October
2024 under the group of Prof. Luca Benini

• My research focuses on the hardware
acceleration of Artificial Intelligence applications
on energy efficient platforms

2025/02/20 2

The Transformer

• Transformers are the main models driving the
evolution of modern Artificial Intelligence

• Both in perceptive task and in generative
applications

• However, this performance uplift comes at a
cost

• Transformers generally use more parameters than
previous-gen neural networks

• Each layer of a Transformer is more complex,
featuring multi-head self-attention (MHSA) and
additional projections

2025/02/20 3

Why Transformers at the Edge?

• State-of-the-art models are in the order of 𝟏𝟎𝟏𝟏, 𝟏𝟎𝟏𝟐 parameters

• Edge inference is unthinkable, not even remotely near the required performance and
memory capacity on embedded devices

• Cloud is the natural choice for these models

• Significant interest in running smaller models (𝟏𝟎𝟖, 𝟏𝟎𝟗 parameters) at the
Edge

• Why running such models at the edge?

• Low latency applications

• Reduce wireless traffic congestion

• Improve privacy and security in GenAI applications

2025/02/20 4

A Fully Integer Transformer?

• Fully-integer CNNs are the standard

• Quantization greatly cuts the model size

• Boosts inference speed and efficiency

• Comparable performance to non-quantized models

• What about Transformers?

• Orders of magnitude more expensive to train compared to CNNs

• Often trained on huge, non-public datasets and/or with human feedback

• Activation quantization still not mature

• Quantization is often unfeasible!

• For this reason, we will focus on the acceleration of transformers in their
native format (BF16)

2025/02/20 5

The PULP Cluster Template

• 2-8 RISC-V digital signal processing
cores

• Shared L1 Scratchpad Memory (Tightly
Coupled Data Memory)

• bank interleaving to maximize available
bandwidth in typical parallel computing
scenarios

• 32KiB shared instruction cache

• Accelerate specific tasks through:

• ISA extensions

• Cooperative HWPE (Hardware Processing
Engines)

2025/02/20 6

CLUSTER

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

Mem

Mem

I$

Cooperative

Accelerators ISA Ext. ISA Ext. ISA Ext. ISA Ext.

A Transformer-Ready PULP Cluster?

• 8 RI5CY 32-bit cores

• 4-stages, in-order pipeline

• Xpulp extensions (HW loops, bit
manipulations, SIMD)

• Private FPU supporting FP32 and BF16
formats, with 2-way SIMD support for
BF16

• 256KiB of TCDM split among 32 banks

• A Tensor Processing Engine based on
the RedMulE architecture

2025/02/20 7

CLUSTER

Tightly Coupled Data Memory

Logarithmic Interconnect

RV 0

core

Bank 17DMA Bank 31Bank 30

RV 7

core

Bank 1 Bank 15Bank 14

Bank 16

Bank 0

I$

Tensor

Processing

Engine Xpulp Xpulp

Is GEMM Really Enough?

• Let’s run ViT-Base on the
proposed cluster and sweep
RedMulE’s number of CEs

• Nonlinear operations are
approximated using the fastest
possible method

• Huge initial gains but diminishing
returns as we enlarge the Tensor
Processing Engine

• Utilization as low a 31%

• Big relative contribution from
non-GEMM operations when
matmuls are accelerated

2025/02/20 8

31%

1.34×

1.51×

1.68×

12.3×
46% 60% 71%TPE Utili:

The Attention Mechanism & Softmax

• Attention consists of multiple GEMMs
+ softmaxs

• Unlike CNNs, softmax is applied multiple
times every layer

• It is fundamental to also accelerate
softmax if we target Transformer-
based models

• What’s the deal with this function?

• It is based on the exponential function

• It is NOT a point-to-point function

2025/02/20 9

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑥𝑖 =
𝑒𝑥𝑖−𝑥𝑚𝑎𝑥

∑𝑒𝑥𝑗−𝑥𝑚𝑎𝑥

Glibc’s Exponential Function

• How is exp normally implemented? Let’s
have a look to glibc’s implementation…

• Look-up tables, polynomial
approximations, double precision…

• Clearly not suitable for low-power
applications, let alone hardware
accelerators

• We need an alternative

2025/02/20 10

Other exp Approximations

• What about less computationally-intensive approximations?

• CORDIC

• Good accuracy and efficient

• Slow convergence

• LUT-based methods

• Perform no computation at all besides interpolation

• Costly in terms of area

• Work best with limited ranges

• Polynomial approximations

• We can build optimal approximations using Chebyshev’s polynomials

• For a good result we must limit the input range

2025/02/20 11

An Efficient Approximation – Schraudolph’s Method

• Think outside the box:

• How are floats stored?

• How do we find their value?

• Then what if add an integer the bias
and replace the exponent with it?

• We get a perfect base-2
exponentiation

• However:

• What about base-e exp?

→ Just multiply the input by log2 𝑒

• What if the input is not an integer?

2025/02/20 12

132 5127

An Efficient Approximation – Schraudolph’s Method

• Let’s apply the same function to a
fixed-point number

• Same process as before but we shift
the number until the integer part
overlaps with the exponent bits

• What happens to the result?

• The integer part is perfectly
exponentiated

• The fractional part becomes the
mantissa

• We get a linear interpolation of
the 2 nearest integer powers of 2

2𝑥 ≈ 2int 𝑥 ⋅ 1 + frac 𝑥 ≔ exps 𝑥

2025/02/20 13

132

5

127

.25

.0

.25

Improving Schraudolph’s Accuracy

• In the original paper, a constant is
added to the result, shifting the
function to minimize the average
error

• Comes for free in software
implementations

• From now on we will use this function in
software approximations

• We propose to enhance the accuracy
of the approximation by processing
the mantissa only

• We replace frac 𝑥 with a polynomial

𝑃 frac 𝑥 that approximates 2frac 𝑥

2025/02/20 14

exps 𝑥 ≔ 𝑎𝑥 + 𝑏 − 𝑐

Our Proposed Enhancement (1)

• We define 𝑷 𝒙 as a piecewise
second-order polynomial

• For 𝑥 ∈ 0,0.5 we sum a straight-line
tangent to 2𝑥 − 1 in 0 with a parabola
centered in 0

• For 𝑥 ∈ 0.5,1 we do as before, but the
functions are centered in 1

• Can we simplify the second
polynomial to make it look more like
the first?

• YES, if we approximate 1 − 𝑥 with it’s
one’s complement

2025/02/20 15

Our Proposed Enhancement (2)

• In practice, we replace the additive
factors with 2 free parameters
(𝜸𝟏,𝜸𝟐) and optimize them
independently

• We minimize the error introduced
by the approximation using a
Montecarlo procedure

• Very low final parameter bit width

• 4 bits for 𝛼 and 𝛽

• 8 bits for 𝛾1 and 𝛾2

2025/02/20 16

𝛼 = 0.21875 𝛽 = 0.4375 𝛾1 = 3.296875 𝛾2 = 2.171875

Accuracy Evalutation

• Average relative error of 0.14%

• 13× decrease compared to Schraudolph’s
method

• Relative accuracy of 99.86%

• The relative error is no greater than
0.78%

• 3.7× decrease compared to Schraudolph

17

13x

3.7x

2025/02/20

SoftEx

• Parametric accelerator of softmax on
BFloat16 vectors

• Organized as an HWPE

• The datapath features:

• N lanes containing a Multiplication and
Addition Unit (MAU) and an Exponential
Unit (EXPU)

• an Accumulator module containing a single
pipelined FP32 Fused Multiply-Add (FMA)
unit

• Softmax is split into: Accumulation,
Inversion, and Normalization

2025/02/20 18

SoftEx – Accumulation

• During this step we compute the
denominator of softmax

• Each cycle N inputs are read, subtracted
the maximum score, exponentiated and
pushed into the accumulator

• To avoid a maximum search, we use an
online normalization scheme

• Each score is subtracted the current
maximum score

• When the maximum is updated, all partial
sums in the accumulator are rescaled by

𝑒oldmax−newmax

2025/02/20 19

SoftEx – Inversion

• Once all the scores have been read, we
move to the Inversion step

• First, all partial sums in the accumulator
are summed together

• Then, the reciprocal is computed using 2
Newton-Raphson iterations

• How do we choose the initial estimate?

• The exponent of the reciprocal can be
computed exactly as 2 BIAS − 1 − EXP

• The mantissa is estimated with the

parabola
1

2
1 − MANT 2

2025/02/20 20

SoftEx – Normalization

• In the final step, the vector is read again
and the exponentiated values are
multiplied by the reciprocal of the
denominator

• The MAUs are used to both subtract the
maximum input and normalize the
outputs

• To fully utilize the available memory
bandwidth during accumulation and
normalization, the load of a new vector of
scores and the store of a vector of
probabilities are alternated

2025/02/20 21

Is Softmax Enough?

• If we look at the attention layer alone there are no major nonlinearities
left

• However, there is still the feed-forward network…

• While the original Transformer employed ReLU, modern models forego
this function in favor of more complex activation functions

• A commonly used function in high-performance models is GELU

2025/02/20 22

Gaussian Error Linear Unit

• GELU is an activation function consistently
outperforming ReLU

• Instead of gating the input like ReLU, GELU
weights the input by the value of the Guassian
Cumulative Distribution Function

GELU 𝑥 = 𝑥 ⋅ Φ 𝑥 = 𝑥 ⋅
1

2𝜋
න
−∞

𝑥

exp −
1

2
𝑡2 𝑑𝑡

• Again, we need an approximation of this
function!

2025/02/20 23

Calculating GELU in Practice

• The original paper proposes 2 approximations

GELU 𝑥 ≈ 𝑥 ⋅
1

2
1 + tanh 2/𝜋 𝑥 + 0.044715𝑥3

GELU 𝑥 ≈ 𝑥 ⋅ 𝜎 1.702𝑥

• Both tanh and sig are based on exponentials! However…

tanh 𝑥 ≐
𝑒2𝑥 − 1

𝑒2𝑥 + 1

𝜎 𝑥 ≐
1

1 + 𝑒𝑥

• They both require a division of the terms, out of the question

• Are there other approximations solely based on exponentials and basic
arithmetic?

2025/02/20 24

Φ as a Sum of Exponentials (1)

• Let’s focus on the complementary Gaussian CDF, the Q-function

𝑄 𝑥 ≐ 1 − Φ 𝑥 =
1

2𝜋
න
𝑥

+∞

exp −
1

2
𝑡2 𝑑𝑡

• An alternative formulation of the Q-function for positive arguments is:

𝑄 𝑥 =
1

𝜋
න
0

𝜋
2
exp −

𝑥2

2sin2 𝜃
𝑑𝜃 , 𝑥 ≥ 0

• If we apply the rectangular integration formula as proposed by Chiani:

𝑄 𝑥 ≤
1

𝜋
෍

𝑖=1

𝑁

න
𝜃𝑖−1

𝜃𝑖

exp −
𝑥2

2sin2 𝜃𝑖
𝑑𝜃 =෍

𝑖=1

𝑁

𝑎𝑖𝑒
−𝑏𝑖𝑥

2
, 𝑥 ≥ 0

• We have an upper bound for Q (and 𝚽) expressed as a sum of exponentials!

• This formulation is symmetrical: for 𝑥 < 0 it evaluates Φ

• However, it is still an upper bound…

2025/02/20 25

Φ as a Sum of Exponentials (2)

• Can we turn Chiani’s result it into an approximation?

• Yes, Tanash and Riihone propose a method to optimize the a and b parameters by
solving an optimization problem

• Optimizes the relative error of the approximation for 𝑥 ≤ 𝑥2𝑁+1 given the rightmost extreme of the
interval (𝑥2𝑁+1) and the number of terms (𝑁)

• The resulting approximation is optimal in a minmax sense

• Also converges quickly!

2025/02/20 26

The Extended SoftEx

• SoftEx accelerates only the sum of
exponentials

• The remaining, simple steps are delegated
to the cores

• Little modifications compared to the
softmax-only version

• 2 buffers for the a and b weights and
accumulator per lane

• The accumulators are NOT FMAs

• The accumulated value is bounded within
the 0,0.5 range, we can use fixed points

• We just have to decide the number of bits
to use for representing this value

2025/02/20 27

Where to Optimize the Function?

• We need an approximation that is
accurate near 0 and just good enough far
from it

• After all, GELU behaves similarly to ReLU for
𝑥 ≫ 0

• We solve the optimization problem for
𝒙 ≤ 𝟐. 𝟖

• For 𝑥 > 2.8 the value of GELU in BF16 is
exactly the value of the input

• For 𝑥 < −2.8 the value of GELU can be safely
approximated with 0

• Now we have to determine the optimal
number of bits to use in the accumulator

2025/02/20 28

Relive Error: 1.0026

> 1 BF16 ULP

Absolute Error: 0.0072

How Many Bits?

• Swept both the number of bits and the number of terms and evaluated:

• Percentage of label mismatches and logits mean squared error on ViT on ImageNet1k

• Perplexity on GPT2 on the WikiText benchmark

• Using 10 or less bits results in significant deviations from the base models

• With 11 or more bits the deviations stabilize at around 4 terms

2025/02/20 29

14 bits, 4 terms

0.27% 𝟔. 𝟒 ⋅ 𝟏𝟎−𝟓 37.82

0.67% 0.0005
37.74

Schraudolph + tanh

The Final Test System

• 8 RI5CY RISC-V cores with the Xpulp
extension and private FPU

• 256KiB TCDM split among 32 banks

• 32 KiB of shared instruction cache

• RedMulE Tensor Processing Engine
in 24x8 computing element
configuration

• SoftEx softmax&GELU accelerator in
16 lanes configuration

2025/02/20 30

SoftEx – Area, Power and Performance (1)

• Cluster implemented in GlobalFoundries 12LP+
technology

• Benchmarked typical conditions in 2 operating
points:

• 0.8V and 1.12GHz for maximum performance

• 0.55V and 460MHz for maximum efficiency

• SoftEx area occupation: 0.039 mm𝟐

• 3.22% of the cluster area (1.21 mm2)

• 1/6 of RedMulE’s area (0.24 mm2)

• SoftEx area dominated by the adder tree and MAUs

• Exponential units and accumulators account for only
10.1% and 11.5% of the total, respectively

2025/02/20 31

SoftEx – Area, Power and Performance (2)

• Cluster power consumption during softmax:

• 278 mW @ 0.8V, 53.2 mW for SoftEx

• 56.1 mW @ 0.55V, 9.87 mW for SoftEx

• MAUs dominate the power consumption (24.2%)

• EXPUs only contribute by 13.7%

• Benchmarked on activations from MobileBERT

• 6.2-10.8× faster compared to the 8 RISC-V cores using
Schraudolph (exps)

• 15.3-26.8× less power-hungry than the best software
implementation

• Software implementation of the algorithm (expp) on
average 31% slower than exps

2025/02/20 32

SoftEx – Area, Power and Performance (3)

• Cluster power consumption during sum of exp

• 276 mW @ 0.8V, 50.8 mW for SoftEx

• 55.7 mW @ 0.55V, 9.46 mW for SoftEx

• Accumulators dominate the power (22%) with
the MAUs close behind (20%), higher EXPU
contribution compared to softmax (16%)

• GELU benchmarked on ViT’s FFN

• Software implementations use the sigmoid
approximation

• Φ approximated with a 4-term sum of exponentials

• Even if partially performed in software, 5.11×
speedup and a 5.29× higher energy efficiency
compared to SW

2025/02/20 33

Cluster Performance on MobileBERT’s Attention

• Bottleneck solely due to softmax

• Peak throughput of 324 GOPS

• 1.3-2.17× faster than the fastest software
implementation

• Peak energy efficiency of 1.30 TOPS/W

• 20.5-75.4% increment compared to the
most efficient software implementation

• Relative softmax runtime reduced by
up to 4 times

2025/02/20 34

Cluster Performance on ViT

• Bottleneck shared between softmax
and GELU

• 310 GOPS@0.8V

• End-to-end latency of 113 ms

• 1.58× throughput increase on ViT base
wrt software-only softmax & GELU

• Using SoftEx-assisted GELU increases
throughput by 1.30× wrt SW GELU

• 1.34 TOPS/W@0.55V

• 1.42× better efficiency compared to the
approximate SW implementation

2025/02/20 35

Conclusion

• We presented a flexible acceleration template for Transformers at the
edge, based on an 8-core RISC-V cluster augmented with:

• A 24×8 Computing Elements tensor processing engine

• SoftEx, a novel accelerator for BFloat16 softmax and GELU non-linearities

• Using SoftEx boost the system throughput by 1.58× and its energy
efficiency by 1.42× on ViT

• 310 GOPS at 0.8V

• 1.34 TOPS/W at 0.55V

• SoftEx successfully achieves its design goal of alleviating the softmax and
GELU bottleneck

2025/02/20 36

Q&A

pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

Institut für Integrierte Systeme – ETH
Zürich
Gloriastrasse 35
Zürich, Switzerland
DEI – Università di Bologna
Viale del Risorgimento 2
Bologna, Italy

Andrea Belano andrea.belano2@unibo.it

