

December 8-10 | Virtual Event

CORE-V MCU SoC

CONTRIBUTE. COLLABORATE. COMMERCIALIZE.

Florian Zaruba, OpenHW Group florian@openhwgroup.org

iforma tech

riscvsummit.com #RISCVSUMMIT

CORE-V MCU SoC, Open Source, 22nm MCU with Embedded FPGA

Florian Zaruba florian@openhwgroup.org

T@be4web T@openhwgroup

www.openhwgroup.org

© OpenHW Group

History

- Both platforms originate from the PULP Project: Tuned for energy-efficiency
- CORE-V MCU is derived from PULPissimo
 - Efficient micro-controller
 - Improved CV32E40P
 - Standardized OBI protocol
 - APB for µDMA subsystem
- CORE-V APU is derived from Ariane's SoC
 - UNIX-capable system
 - Minimal infrastructure to demonstrate the core
 - AXI-based
 - Xilinx Peripherals (SPI, DW converter)

CORE-V MCU

- Shared memory
 - Unified Data/Instruction Memory
- Support for Accelerators
 - i.e., HW Processing Engine (HWPE)
 - Direct shared memory access
 - Programmed through APB bus
- µDMA for I/O subsystem
 - Can copy data directly from I/O to memory without involving the core
- Used as controller in larger systems

https://github.com/openhwgroup/core-v-mcu

CORE-V MCU

- Rich set of peripherals for edge AI sensors (vision and time series):
 - QSPI (up to 280 Mbps)
 - Camera Interface
 - I2C/I2S
 - JTAG, GPIOs
 - Interrupt controller
 - boot ROM
- Custom accelerators for ML use cases

https://github.com/openhwgroup/core-v-mcu

PULP Interrupt Controller

- Generates up to 32 requests
 - Events vs. interrupts
- Mapped on the APB bus
- Receives events in a FIFO from the SoC event generator
 - Unique interrupt ID
- Mask, pending, ack, event id registers
- Special set, clear, read, write operation registers

- Sources:
 - Timers
 - GPIO
 - Custom accelerator
 - Events from the uDMA
- CV32E40P
 - Support for standardized and "fast" RISC-V interrupt mechanisms

1111

Tightly Coupled Data Memory Interconnect

† †

instr 🕇 🔹 🛉 data

APB / Peripheral Interconnect

CORE-V MCU Physical Design

- Two realizations:
 - FPGA Digilent Nexys A7 or Genesys 2
 - ASIC GLOBALFOUNDRIES 22FDX
- ASIC coming early next year
 - Including Quicklogic eFPGA
- Prototype your custom accelerator for AI/ML applications
 - 1. FPGA
 - 2. eFPGA

OpenHW Group BHAG

BIG HAIRY AUDACIOUS GOAL

CORE-V[™] APU & MCU SoCs

- Production Ready
- Using CORE-V CVA6 & CVE4 Cores
- Deep Sub-Micron SoCs
- On evaluation boards
- Running Linux / FreeRTOS
- Tapeout CORE-V MCU ~Q1'2021

CORE-V

Case Study: ETH Zurich "Arnold" Test Chip Platform

- ~600MHz, 3mm x 3mm die size on GF22FDX
- RISC-V with QuickLogic ArcticPro 2 eFPGA

11

Arnold – Heterogenous, Energy-Efficient Architecture

- Features
 - RISC-V General Purpose Processor
 - 512 KiB on-chip Memory
 - Broad set of peripheral I/O with memory access via µDMA
 - Tightly coupled eFPGA that supports
 - Direct connection to I/O
 - Shared memory accelerator interface
 - I/O filtering functions
 - Config and control interface to/from system
- Benefits
 - Energy efficient architecture enables flexibility to implement hardware partitioning of software requirements
 - Lower unit cost than vs discrete MCU / discrete FPGA implementations
 - OTA hardware upgrades
 - Lower NRE cost vs 'spinning an ASIC' for each derivative

Pasquale Davide Schiavone, Davide Rossi <i>Membe</i>	<i>r, IEEE</i> , Alfio Di Mauro, Frank Gürkaynak, Timothy
Saxe, Mao Wang, Ket Chong	Yap, Luca Benini <i>Fellow, IEEE</i>
<text><text><section-header><section-header><text><text></text></text></section-header></section-header></text></text>	<text><text></text></text>

https://arxiv.org/pdf/2006.14256.pdf

- Project announced at <u>OSDForum</u> Sept 2020
- Real Time Operating System (e.g. FreeRTOS) capable ~600+MHz CV32 MCU host CPU
- Embedded FPGA fabric with hardware accelerators from QuickLogic
- Multiple low power peripheral interfaces (SPI, GPIO, I2C, HyperRAM, CAMIF, etc.) for interfacing with sensors, displays, and connectivity modules
- Built in 22FDX with GF

Software

- The SDK contains all the tools and runtime support for CORE-V based microcontrollers
- Provides:
 - HAL
 - crt0 and linker scripts
 - higher level functions (API)
- CORE-V toolchain and SW ecosystem under development

O Ottawa, Ontario, Canada	b@openhwgroup.org
Q Find a repository Type: All - Language: All -	
Core-v-verif Functional verification project for the CORE-V family of RISC-V cores. ● Assembly ♀ 46 ☆ 56 ① 15 ♀ 3 Updated 7 hours ago	Top languages SystemVerilog HTML C++ Python Assembly
cv32e40p Cv32e40P is an in-order 4-stage RISC-V RV32IMFCXpulp CPU based on RISCY from PULP-Platform	Most used topics Manage hugo riscv webdev
SystemVerilog 💱 176 🏠 404 () 41 (2 issues need help) 👫 6 Updated 18 hours ago	People 57 >
corev-binutils-gdb √√√√ ● C ♀ 4 ☆ 2 ① 1 \$\$ 1 Updated 19 hours ago	
force-riscv Instruction Set Generator Initially contributed by Futurewei C++ ♀ 16 ☆ 38 ① 4 \$ \$ 0 Updated 20 hours ago	\$\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
core-v-docs	

Get involved: https://github.com/openhwgroup/core-v-sw

Current Status

- CORE-V MCU CV32E40P running on Genesys 2 with simple runtime
 - Code built with Embecosm's CORE-V GCC development tools
 - GDB/OpenOCD debug
 - Come join us and contribute at:
 <u>https://github.com/openhwgroup/core-v-mcu</u>
- CORE-V MCU with Ashling RiscFree/Opella-XD JTAG probe running on Genesys 2

Next Steps

- Further testing and debugging of the implementation
- Integration of more system peripherals
- More complex SDK
- Architectural enhancements, such as implementing Open Bus Interface with CV32 now supports
- Integration/validation of proprietary and open-source tools (hardware, software)
- Training materials, demos

Looking for collaborators to help!

CORE-V APU

- Minimum set of peripherals to boot Linux
- Code is on SD Card
- Zero-stage bootloader is in boot ROM
- UART as main UI
- Ethernet for network connectivity

https://github.com/openhwgroup/cva6

CORE-V MCU & APU FPGA

- Default Board: Genesys 2
 - Wide-spread adoption
 - Rich set of board peripherals
 - Reasonably cheap (discounts through OHW, academics)
- Alternative: Nexys A7
 - Cheaper
 - Higher availability
- "User ports":
 - VC707, KC705
 - Ultrascale Boards

RISC-V Debug

- Draft specification 0.13
- Defines debug registers for
 - run/halt/single-step
 - reading/writing GPR, FPR and CSRs
 - Querying hart status
- JTAG interface
- OpenOCD support
- Our choice: Execution Based

- Standard allows for different debug probes to be used
- IDE integration

Debug (Detailed)

- Special Debug Mode
 - Less intrusive, leverage existing pipeline
 - DPC, debug-interrupt, dret and ebreak
- Halt, Resume, (Single-)step
 - Only required command: Abstract read (read floating-point register, register and CSR)
 - Debug Transport Protocol (orthogonal)
 - Currently only JTAG specified
- SystemVerilog reference implementation available
 - <u>https://github.com/pulp-platform/riscv-dbg</u>

Meet the Team: HW and SW Task Groups

- Hardware TG
 - Hugh Pollitt-Smith (CMC)
 - Tim Saxe (QuickLogic)

- Software TG
 - Jeremy Bennet (Embecosm)
 - Yunhai Shang (Alibaba T-Head)

OpenHW Director of Engineering: Florian Zaruba

Get on Board!

- Development is in the open!
- CORE-V MCU
 - <u>https://github.com/openhwgroup/core-v-mcu</u>
- CORE-V APU
 - Directly in the core's repository
 - <u>https://github.com/openhwgroup/cva6</u>
- Thank you and be sure to visit the OpenHW booth here at the Virtual RISC-V Summit with demos from...

