
QuantLab Virtual Workshop
Matteo Spallanzani

30th June 2021, Zürich

Outline

1. Computational graphs & deep learning frameworks
• Deep neural networks as computational graphs

• Dynamic vs. static computational graphs

2. QuantLab & quantlib
• The deep learning development stack

• QNNs: a HW/SW co-design problem

3. Graph editing
• Tree traversal and leaf replacement

• Graph morphisms and algebraic graph rewriting

QuantLab Virtual Workshop
Part 1: computational graphs & deep learning frameworks

Graph terminology - basics

• Let 𝑉 ≠ ∅ be a set of nodes

• Graph
• 𝐺 = 𝑉, 𝐸 ⊆ 𝑉 × 𝑉
• Elements e ∈ 𝐸 are called arcs

• Undirected graph
• 𝑢, 𝑣 ∈ 𝐸 ⇒ 𝑣, 𝑢 ∈ 𝐸
• Elements 𝑒 ∈ 𝐸 are called edges

• Bipartite graph
• 𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 | 𝑉𝐴, 𝑉𝐵 ≠ ∅, 𝑉𝐴 ∩ 𝑉𝐵 = ∅

• 𝐸 ⊆ (𝑉𝐴 × 𝑉𝐵 ∪ (𝑉𝐵 × 𝑉𝐴))

Graph terminology - basics

• Let 𝑉 ≠ ∅ be a set of nodes

• Graph
• 𝐺 = 𝑉, 𝐸 ⊆ 𝑉 × 𝑉
• Elements e ∈ 𝐸 are called arcs

• Undirected graph
• 𝑢, 𝑣 ∈ 𝐸 ⇒ 𝑣, 𝑢 ∈ 𝐸
• Elements 𝑒 ∈ 𝐸 are called edges

• Bipartite graph
• 𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 | 𝑉𝐴, 𝑉𝐵 ≠ ∅, 𝑉𝐴 ∩ 𝑉𝐵 = ∅

• 𝐸 ⊆ (𝑉𝐴 × 𝑉𝐵 ∪ (𝑉𝐵 × 𝑉𝐴))

Graph terminology - basics

• Let 𝑉 ≠ ∅ be a set of nodes

• Graph
• 𝐺 = 𝑉, 𝐸 ⊆ 𝑉 × 𝑉
• Elements e ∈ 𝐸 are called arcs

• Undirected graph
• 𝑢, 𝑣 ∈ 𝐸 ⇒ 𝑣, 𝑢 ∈ 𝐸
• Elements 𝑒 ∈ 𝐸 are called edges

• Bipartite graph
• 𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 | 𝑉𝐴, 𝑉𝐵 ≠ ∅, 𝑉𝐴 ∩ 𝑉𝐵 = ∅

• 𝐸 ⊆ (𝑉𝐴 × 𝑉𝐵 ∪ (𝑉𝐵 × 𝑉𝐴))

Graph terminology - basics

• Let 𝑉 ≠ ∅ be a set of nodes

• Graph
• 𝐺 = 𝑉, 𝐸 ⊆ 𝑉 × 𝑉
• Elements e ∈ 𝐸 are called arcs

• Undirected graph
• 𝑢, 𝑣 ∈ 𝐸 ⇒ 𝑣, 𝑢 ∈ 𝐸
• Elements 𝑒 ∈ 𝐸 are called edges

• Bipartite graph
• 𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 | 𝑉𝐴, 𝑉𝐵 ≠ ∅, 𝑉𝐴 ∩ 𝑉𝐵 = ∅

• 𝐸 ⊆ (𝑉𝐴 × 𝑉𝐵 ∪ (𝑉𝐵 × 𝑉𝐴))

Supervised learning: the problem

• The task is approximating an (unknown) function

𝑓∗ ∶ 𝑋 → 𝑌

• How can we assess the quality of an approximation 𝑓 ≈ 𝑓∗?

• Loss function:
ℓ ∶ 𝑌 × 𝑌 → ℝ0

+

• Loss functional:

ℒ 𝑓 ≔ න
𝑋 × 𝑌

ℓ 𝑓 𝑥 , 𝑦 𝑑𝜇(𝑥, 𝑦)

Supervised learning: the solution

• Machine learning system
• Hypothesis space

• 𝑓 ∶ Θ × 𝑋 → 𝑌 (i.e., a collection 𝑓𝜃 ∶ 𝑋 → 𝑌 𝜃 ∈ Θ})

• Rewrite ℒ 𝑓 = ℒ 𝜃 = 𝑋׬ × 𝑌
ℓ 𝑓 𝜃, 𝑥 , 𝑦 𝑑𝜇(𝑥, 𝑦)

• Data set
• 𝒟 ∶ 𝑋 × 𝑌 → ℕ0 | 0 < ∑ 𝑥,𝑦 ∈ 𝑋 × 𝑌𝒟 𝑥, 𝑦 = 𝑁 < +∞

• Approximate 𝜇 ≈
1

𝑁
∑ 𝑥,𝑦 ∈ 𝑋 × 𝑌𝒟 𝑥, 𝑦 𝛿(𝑥,𝑦)

• Learning algorithm
• If ℒ and 𝑓 are differentiable, it can be gradient-based:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ∇𝜃ℒ 𝜃𝑡 = 𝜃𝑡 − 𝜂 (
1

𝑁
∑ 𝑥,𝑦 ∈ 𝑋 × 𝑌𝒟 𝑥, 𝑦 ∇𝜃ℓ 𝑓 𝜃𝑡 , 𝑥 , 𝑦)

Computational graphs

• Directed, bipartite graphs

• 𝑉 = 𝑉𝑀 ∪ 𝑉𝐾
• Memory nodes 𝑣 ∈ 𝑉𝑀 represent operands

• Kernel nodes 𝑣 ∈ 𝑉𝐾 represent operations

• 𝐸 ⊆ (𝑉𝑀 × 𝑉𝐾 ∪ (𝑉𝐾 × 𝑉𝑀))
• Arcs 𝑒 ∈ 𝐸 ∩ (𝑉𝑀 × 𝑉𝐾) represent read/load dependencies

• Arcs 𝑒 ∈ 𝐸 ∩ (𝑉𝐾 × 𝑉𝑀) represent write/store dependencies

• Each operand is the result of at most one operation:
• ∀𝑣 ∈ 𝑉𝑀, 𝑢1, 𝑣 , 𝑢2, 𝑣 ∈ 𝐸 ⇒ 𝑢1 = 𝑢2

DNNs as computational graphs: an example

𝑤2 𝜍(𝑏1 + 𝑤1𝑥0)

DNNs as computational graphs: an example

𝑤2 𝜍(𝑏1 + 𝑤1𝑥0)

*𝑥0

𝑤1

DNNs as computational graphs: an example

𝑤2 𝜍(𝑏1 + 𝑤1𝑥0)

*𝑥0 +

𝑤1 𝑏1

DNNs as computational graphs: an example

𝑤2 𝜍(𝑏1 + 𝑤1𝑥0)

*𝑥0 + 𝜍

𝑤1 𝑏1

DNNs as computational graphs: an example

𝑤2 𝜍(𝑏1 + 𝑤1𝑥0)

*𝑥0 + 𝜍 *

𝑤1 𝑏1 𝑤2

Three ways of performing differentiation

• Symbolic differentiation
• Based on the rules of differential calculus
• Given a function ℒ(𝜃, 𝑧), pre-compute ∇𝜃ℒ|𝜃, 𝑧 as a function of 𝜃 and 𝑧.
• Cons:

• Computing the differential automatically might be impossible for complex functions
• Computing the differential by hand can be time-consuming and is error-prone

• Numerical differentiation
• Based on the definition of derivative
• Given a function ℒ(𝜃, 𝑧), computing ℒ 𝜃 + ℎ, 𝑧 − ℒ(𝜃, 𝑧) requires two evaluations.
• Cons:

• Computers have no notion of limit operation: numerical derivatives are usually approximations computed using small values
for ∥ ℎ ∥

• Approximation errors are more likely when 𝜃 is multi-dimensional

• Automatic differentiation

Three ways of performing differentiation

• Symbolic differentiation
• Based on the rules of differential calculus
• Given a function ℒ(𝜃, 𝑧), pre-compute ∇𝜃ℒ|𝜃, 𝑧 as a function of 𝜃 and 𝑧.
• Cons:

• Computing the differential automatically might be impossible for complex functions
• Computing the differential by hand can be time-consuming and is error-prone

• Numerical differentiation
• Based on the definition of derivative
• Given a function ℒ(𝜃, 𝑧), computing ℒ 𝜃 + ℎ, 𝑧 − ℒ(𝜃, 𝑧) requires two evaluations.
• Cons:

• Computers have no notion of limit operation: numerical derivatives are usually approximations computed using small values
for ∥ ℎ ∥

• Approximation errors are more likely when 𝜃 is multi-dimensional

• Automatic differentiation

Three ways of performing differentiation

• Symbolic differentiation
• Based on the rules of differential calculus
• Given a function ℒ(𝜃, 𝑧), pre-compute ∇𝜃ℒ|𝜃, 𝑧 as a function of 𝜃 and 𝑧.
• Cons:

• Computing the differential automatically might be impossible for complex functions
• Computing the differential by hand can be time-consuming and is error-prone

• Numerical differentiation
• Based on the definition of derivative
• Given a function ℒ(𝜃, 𝑧), computing ℒ 𝜃 + ℎ, 𝑧 − ℒ(𝜃, 𝑧) requires two evaluations.
• Cons:

• Computers have no notion of limit operation: numerical derivatives are usually approximations computed using small values
for ∥ ℎ ∥

• Approximation errors are more likely when 𝜃 is multi-dimensional

• Automatic differentiation

Automatic differentiation

• Based on the chain rule

• Each operation computes the gradients with respect to its inputs

• Two modes
• Direct-mode

• Can be computed in parallel to the forward pass

• Almost always requires recomputing tensor contractions

• Reverse-mode (aka back-propagation)
• Must wait the completion of the forward pass before beginning the gradient

computation

• Computes each product in the chain rule just once

Differentiable computational graphs

• Each operation 𝑣 ∈ 𝑉𝐾 is differentiable with respect to its operands
𝑢 ∈ 𝑉𝑀| 𝑢, 𝑣 ∈ 𝐸

• Forward pass (aka inference pass)

• Backward pass
• This is gradient computation

• Do not confuse it with gradient descent!

* + 𝜍 * ∇𝑠2ℓ

∇𝑤1
ℓ ∇𝑏1ℓ ∇𝑤2

ℓ

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any

operation (define-and-run)

• Pro: the graph’s structure is clear and easy
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be
obscure and cumbersome to manipulate

A thousand flavours of computational graphs

ONNX: the “assembly” of computational graphs

*𝑥0 + 𝜍 *

𝑤1 𝑏1 𝑤2

A thousand flavours of computational graphs

TensorFlow (v1.0 – might have changed)

• Operation “super-nodes” contain:
• Memory nodes

• Constants
• Parameters
• Hyper-parameters
• Output features

• Kernel nodes

• Edges can be associated to the output memory
nodes contained in each “super-node”
• “Nodes represent operations, edges represent data

flowing between operations”

A thousand flavours of computational graphs

TensorFlow (v1.0 – might have changed)

• Operation “super-nodes” contain:
• Memory nodes

• Constants
• Parameters
• Hyper-parameters
• Output features

• Kernel nodes

• Edges can be associated to the output memory
nodes contained in each “super-node”
• “Nodes represent operations, edges represent data

flowing between operations”

A thousand flavours of computational graphs

PyTorch (v1.9)
• Operation “super-nodes” contain:

• Memory nodes
• Constants
• Parameters
• Hyper-parameters

• Kernel nodes; remember: they are instantiated only at
runtime!

• Defined explicitly in the constructor (__init__) method

• Edges can be associated to the memory nodes
representing features
• Remember: they are instantiated only at runtime!
• Defined implicitly in the forward (__call__) method

A thousand flavours of computational graphs

PyTorch (v1.9)
• Operation “super-nodes” contain:

• Memory nodes
• Constants
• Parameters
• Hyper-parameters

• Kernel nodes; remember: they are instantiated only at
runtime!

• Defined explicitly in the constructor (__init__) method

• Edges can be associated to the memory nodes
representing features
• Remember: they are instantiated only at runtime!
• Defined implicitly in the forward (__call__) method

A thousand flavours of computational graphs

PyTorch (v1.9)
• Operation “super-nodes” contain:

• Memory nodes
• Constants
• Parameters
• Hyper-parameters

• Kernel nodes; remember: they are instantiated only at
runtime!

• Defined explicitly in the constructor (__init__) method

• Edges can be associated to the memory nodes
representing features
• Remember: they are instantiated only at runtime!
• Defined implicitly in the forward (__call__) method

A thousand flavours of computational graphs

NASBench201 data set

• Neural architecture search (NAS) is a
deep-learning-specific variant of model
selection

• NASBench201
• Inputs: genotypes, i.e., structured description

of network topologies
• Outputs: accuracies

• Genotypes are described in terms of cells
• Nodes represent feature arrays
• Edges represent operations and their

parameters

0

+

1 3

2

+

A thousand flavours of computational graphs

NASBench201 data set

• Neural architecture search (NAS) is a
deep-learning-specific variant of model
selection

• NASBench201
• Inputs: genotypes, i.e., structured description

of network topologies
• Outputs: accuracies

• Genotypes are described in terms of cells
• Nodes represent feature arrays
• Edges represent operations and their

parameters

2

0 1 3

QuantLab Virtual Workshop
Part 2: QuantLab & quantlib

The deep learning development stack

Platform-agnostic

• Data analysis: how can we model the data problem?

• DNN design: which network topology can work best?

• Training: backpropagation + SGD

Platform-specific

• Graph optimisation: ONNX graph (e.g., tiling, “node fusion”)

• Code generation: from ONNX graph to C/C++ code

• Compilation: from C/C++ code to machine codeCompilation

Code generation

Graph optimisation

Training (FP)

DNN design

Data analysis

QuantLab: structure overview

QuantLab

systems managermain.py

QuantLab: the systems package

QuantLab

systems managermain.py

The systems package

systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

The systems package

systems

utils

The systems package: problem sub-package

systems

utils CIFAR10

datautils

$ bash configure/problem.sh CIFAR10

The systems package: adding problems

systems

utils CIFAR10 ILSVRC12 …

datautils

systems

utils CIFAR10 ILSVRC12 …

datautils VGG

preprocess postprocessvgg.py
config.

json
logs

$ bash configure/problem.sh CIFAR10 VGG

The systems package: topology sub-package

The systems package: adding topologies

systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

QuantLab: the manager package

QuantLab

systems managermain.py

The manager package

manager

platform

flows

logbook

assistants

meter

• platform: management of HW/OS aspects (e.g., GPU
aspects, distributed processing)

• flows: the services that can be accessed from the façade

• logbook: the abstraction that mediates the interactions
between the QuantLab flows and the disk

• assistants: the abstractions that assemble the components
of the deep learning systems inside QuantLab flows

• meter: the abstractions to track statistics on parameters and
features of the deep neural network being trained or tested

QuantLab flows

systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

QuantLab flows: configuring an experiment

systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

$ python main.py –problem=CIFAR10 –topology=VGG configure

QuantLab flows: configuring an experiment

$ python main.py –problem=CIFAR10 –topology=VGG configuresystems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

QuantLab flows: configuring an experiment

$ python main.py –problem=CIFAR10 –topology=VGG configuresystems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

QuantLab flows: configuring an experiment

$ python main.py –problem=CIFAR10 –topology=VGG configuresystems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook

QuantLab flows: configuring an experiment

$ python main.py –problem=CIFAR10 –topology=VGG configuresystems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook

QuantLab flows: configuring an experiment

$ python main.py –problem=CIFAR10 –topology=VGG configuresystems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

son
logs

manager

platform flows logbook assistants meter

main.py

Logbook config

QuantLab flows: configuring an experiment

$ python main.py –problem=CIFAR10 –topology=VGG configuresystems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.pylogs

manager

platform flows logbook assistants meter

main.py

Logbook config

config.
json

QuantLab flows: configuring an experiment

$ python main.py –problem=CIFAR10 –topology=VGG configuresystems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.pylogs

manager

platform flows logbook assistants meter

main.py

Logbook config

config.
json

QuantLab flows: configuring an experiment

$ python main.py –problem=CIFAR10 –topology=VGG configuresystems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

QuantLab flows: training a DNN

systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook config

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook config

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook config

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook

Data
Assistant

config

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook

Data
Assistant

Network
Assistant

config

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook

Data
Assistant

Network
Assistant

Training
Assistant

config

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook

Data
Assistant

Network
Assistant

Training
Assistant

Meter
Assistant

config

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook

Data
Assistant

Network
Assistant

Training
Assistant

Meter
Assistant

config

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook

Data
Assistant

Network
Assistant

Training
Assistant

Meter
Assistant

config

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Logbook

Data
Assistant

Network
Assistant

Training
Assistant

Meter
Assistant

config

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

Data
Assistant

Network
Assistant

Training
Assistant

Meter
Assistant

Logbook config

QuantLab flows: training a DNN

$ python main.py –problem=CIFAR10 –topology=VGG train –exp_id=0systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

manager

platform flows logbook assistants meter

main.py

QuantLab: usage overview

• Create a problem sub-package (remember to prepare the data!)

• Create a topology sub-package

• Write the working files:
• Data pre-processing and loading
• Network definition
• Output post-processing
• Quantization recipes and network controllers creators (quantize namespace)

• Write the configuration file that describes how to instantiate the system

• Run the configure flow

• Run the training flow

• Perform fake2true conversion

• Generate code for your platform (warning: this is has not been automated yet!)

ITERATE UNTIL
YOU ARE SATISFIED!

QNNs: a HW/SW co-design problem

Compilation

Code generation

Graph optimisation

fake2true

Post-training quantization

float2fake

Training (FP)

DNN design

Data analysis

Platform-agnostic

• Data analysis: how can we model the data problem?

• DNN design: which network topology can work best?

• Training: backpropagation + SGD

Platform-aware

• float2fake conversion

• Post-training quantization algorithm (w/o fine-tuning)

• fake2true conversion

Platform-specific

• Graph optimisation: ONNX graph (e.g., tiling, “node fusion”)

• Code generation: from ONNX graph to C/C++ code

• Compilation: from C/C++ code to machine code

QNNs: a HW/SW co-design problem

Compilation

Code generation

Graph optimisation

fake2true

Post-training quantization

float2fake

Training (FP)

DNN design

Data analysis

Fine-tuning (FP)

Platform-agnostic

• Data analysis: how can we model the data problem?

• DNN design: which network topology can work best?

• Training: backpropagation + SGD

Platform-aware

• float2fake conversion

• Post-training quantization algorithm (w/ fine-tuning)

• fake2true conversion

Platform-specific

• Graph optimisation: ONNX graph (e.g., tiling, “node fusion”)

• Code generation: from ONNX graph to C/C++ code

• Compilation: from C/C++ code to machine code

QNNs: a HW/SW co-design problem

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

Platform-agnostic

• Data analysis: how can we model the data problem?

• DNN design: which network topology can work best?

• Training: backpropagation + SGD

Platform-aware

• float2fake conversion

• Quantization-aware training algorithm

• fake2true conversion

Platform-specific

• Graph optimisation: ONNX graph (e.g., tiling, “node fusion”)

• Code generation: from ONNX graph to C/C++ code

• Compilation: from C/C++ code to machine code

QNNs: a HW/SW co-design problem

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

Platform-agnostic

• Data analysis: how can we model the data problem?

• DNN design: which network topology can work best?

• Training: backpropagation + SGD

Platform-aware

• float2fake conversion

• Quantization-aware training algorithm

• fake2true conversion

Platform-specific

• Graph optimisation: ONNX graph (e.g., tiling, “node fusion”)

• Code generation: from ONNX graph to C/C++ code

• Compilation: from C/C++ code to machine code

TODAY WE WILL NOT DEAL WITH THESE STEPS

QNNs: a HW/SW co-design problem

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

Platform-agnostic

• Data analysis: how can we model the data problem?

• DNN design: which network topology can work best?

• Training: backpropagation + SGD

Platform-aware

• float2fake conversion

• Quantization-aware training algorithm

• fake2true conversion

Platform-specific

• Graph optimisation: ONNX graph (e.g., tiling, “node fusion”)

• Code generation: from ONNX graph to C/C++ code

• Compilation: from C/C++ code to machine code

TODAY WE WILL FOCUS ON THESE STEPS

QuantLab: the quantlib package

QuantLab

systems managermain.py

QuantLab: the quantlib package

QuantLab

systems manager quantlibmain.py

The quantlib package: overview

quantlib

algorithms

editing

backends

lightweight

graphs

The quantlib package: overview

quantlib

algorithms

editing

backends

lightweight

graphs

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

The quantlib package: overview

quantlib

algorithms

backends

lightweight

graphs

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

editing

The quantlib package: overview

quantlib

algorithms

backends

lightweight

graphs

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

editing

The quantlib package: overview

quantlib

algorithms

backends

lightweight

graphs

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

editing

The quantlib package: overview

quantlib

algorithms

backends

lightweight

graphs

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

editing

TODAY’S EXERCISES WILL FOCUS ON THESE TOOLS

The quantlib package: overview

quantlib

algorithms

backends

lightweight

graphs

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

editing

Extending topology sub-packages

systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs

Extending topology sub-packages

systems

utils CIFAR10 ILSVRC12 …

datautils VGG …

preprocess postprocessvgg.py
config.

json
logs quantize

QuantLab: usage overview

• Create a problem sub-package (remember to prepare the data!)

• Create a topology sub-package

• Write the working files:
• Data pre-processing and loading
• Network definition
• Output post-processing
• Quantization recipes and network controllers creators (quantize namespace)

• Write the configuration file that describes how to instantiate the system

• Run the configure flow

• Run the training flow

• Perform fake2true conversion

• Generate code for your platform (warning: this is has not been automated yet!)

ITERATE UNTIL
YOU ARE SATISFIED!

QuantLab: usage overview

• Create a problem sub-package (remember to prepare the data!)

• Create a topology sub-package

• Write the working files:
• Data pre-processing and loading
• Network definition
• Output post-processing
• Quantization recipes and network controllers creators (quantize namespace)

• Write the configuration file that describes how to instantiate the system

• Run the configure flow

• Run the training flow

• Perform fake2true conversion

• Generate code for your platform (warning: this is has not been automated yet!)

ITERATE UNTIL
YOU ARE SATISFIED!

QuantLab: present and future

QuantLab: present and future

Existing features:

• Configuration-based training flows

• Multi-GPU and multi-process
support

• Integration with TensorBoard

• float2fake conversion

• Quantization-aware training
algorithms (STE, INQ, RPR, ANA,
PACT, SAWB)

• fake2true conversion

QuantLab: present and future

Existing features:

• Configuration-based training flows

• Multi-GPU and multi-process
support

• Integration with TensorBoard

• float2fake conversion

• Quantization-aware training
algorithms (STE, INQ, RPR, ANA,
PACT, SAWB)

• fake2true conversion

Planned features:

• Data and network initialisation
seeding

• PyTorch code generation for true-
quantized networks

• Post-training quantization

• More quantization-aware training
algorithms

• Mixed-precision support

QuantLab Virtual Workshop
Part 3: graph editing

Graph editing in quantlib

By graph editing we refer to a collection of techniques to modify graphs

• Tree traversal and leaf replacement
• float2fake conversions

• Graph morphisms and algebraic graph rewriting
• fake2true conversions

Tree traversal and leaf replacement

• Tree: a directed graph G whose associated undirected version is
connected and acyclic

• Rooted tree: a tree where a node has been designated to be the root;
nodes with no incoming edges are called leaves (we assume that the
natural orientation of arcs is towards the root)

• Tree traversal: the process by which, starting from the root of a
rooted tree, all leaves are identified

• Leaf replacement: the process by which a leaf is replaced by another
leaf, or by a rooted tree whose root takes the place of the leaf

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Tree traversal and leaf replacement

Graph terminology - advanced

• Source and target of an arc:
• 𝑠𝐺 ∶ 𝐸 → 𝑉, 𝑠𝐺 𝑢, 𝑣 ≔ 𝑢

• 𝑒𝐺 ∶ 𝐸 → 𝑉, 𝑠𝐺 𝑢, 𝑣 ≔ 𝑣

• Let Λ ≠ ∅ denote a set of labels

• Let ∗∈ Λ denote an undefined label

• Attributed graphs
• Node labelling 𝑙𝐺 ∶ 𝑉 → Λ

• Arc labelling 𝑚𝐺 ∶ 𝐸 → Λ

Functions between graphs

• Let 𝐿 = 𝑉𝐿, 𝐸𝐿 , 𝐻 = (𝑉𝐻, 𝐸𝐻) be graphs

• Since a graph is a pair of sets, a function
between graphs 𝐿, 𝐻 is a pair 𝑔 = (𝑔𝑉 , 𝑔𝐸)
of functions
• 𝑔𝑉 ∶ 𝑉𝐿 → 𝑉𝐻
• 𝑔𝐸 ∶ 𝐸𝐿 → 𝐸𝐻

Preserving the information flow: morphisms

• Preserve the structural flow:
1. 𝑠𝐻 𝑔𝐸 𝑒 = 𝑔𝑉 𝑠𝐿 𝑒 , ∀𝑒 ∈ 𝐸𝐿
2. 𝑡𝐻 𝑔𝐸 𝑒 = 𝑔𝑉 𝑡𝐿 𝑒 , ∀𝑒 ∈ 𝐸𝐿

• Preserve the semantic flow:
3. 𝑙𝐻 𝑔𝑉 𝑣 = 𝑙𝐿 𝑣 , ∀𝑣 ∈ 𝑉𝐿
4. 𝑚𝐻 𝑔𝐸 𝑒 = 𝑚𝐿 𝑒 , ∀𝑒 ∈ 𝐸𝐿

• A function between graphs 𝐿, 𝐻 that
satisfies 1. , 2. , 3. , 4. is called a morphism

• Can you think of a function between
graphs which is not a morphism?

Algebraic graph rewriting

• Graph rewriting rule:
• Context graph
• Template graph and template core
• Replacement graph and

replacement core

• Derivation: recursive definition:
application or sequence of
derivations

• Application point: a morphism;
in practice we use type-checked
isomorphisms

Algebraic graph rewriting

• Graph rewriting rule:
• Context graph
• Template graph and template core
• Replacement graph and

replacement core

• Derivation: recursive definition:
application or sequence of
derivations

• Application point: a morphism;
in practice we use type-checked
isomorphisms

Algebraic graph rewriting

• Graph rewriting rule:
• Context graph
• Template graph and template core
• Replacement graph and

replacement core

• Derivation: recursive definition:
application or sequence of
derivations

• Application point: a morphism;
in practice we use type-checked
isomorphisms

Algebraic graph rewriting

• Graph rewriting rule:
• Context graph
• Template graph and template core
• Replacement graph and

replacement core

• Derivation: recursive definition:
application or sequence of
derivations

• Application point: a morphism;
in practice we use type-checked
isomorphisms

Algebraic graph rewriting

• Graph rewriting rule:
• Context graph
• Template graph and template core
• Replacement graph and

replacement core

• Derivation: recursive definition:
application or sequence of
derivations

• Application point: a morphism;
in practice we use type-checked
isomorphisms

Algebraic graph rewriting

• Graph rewriting rule:
• Context graph
• Template graph and template core
• Replacement graph and

replacement core

• Derivation: recursive definition:
application or sequence of
derivations

• Application point: a morphism;
in practice we use type-checked
isomorphisms

Algebraic graph rewriting

• Graph rewriting rule:
• Context graph
• Template graph and template core
• Replacement graph and

replacement core

• Derivation: recursive definition:
application or sequence of
derivations

• Application point: a morphism;
in practice we use type-checked
isomorphisms

Elevating a JIT graph to a PyTorch graph

Elevating a JIT graph to a PyTorch graph

Light blue
nodes are
identified

Working
memory
node

Elevating a JIT graph to a PyTorch graph

Light blue
nodes are
identified

This graph is not acyclic!

Working
memory
node

Elevating a JIT graph to a PyTorch graph

Light blue
nodes are
identified

This graph is not acyclic!

Working
memory
node

Prune working
memory nodes

Projecting a computational graph

Projecting a computational graph

To memory
partition

To kernel
partition

We can work on simpler graphs!

Some last notes

• QuantLab and quantlib are released under the Apache 2.0 License

• This is a beta release: your feedback is our goal!

• Address communications to spmatteo@iis.ee.ethz.ch

mailto:spmatteo@iis.ee.ethz.ch

Some last notes

• QuantLab and quantlib are released under the Apache 2.0 License

• This is a beta release: your feedback is our goal!

• Address communications to spmatteo@iis.ee.ethz.ch

Special thanks…
… for assisting with the development and proofreading the notebooks:

Georg Rutishauser, Moritz Scherer
… for helping with the licensing and publication process:

Manuel Eggimann, Frank Kagan Gürkaynak

mailto:spmatteo@iis.ee.ethz.ch

We hope to see you at the next edition!

