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Outline

1. Computational graphs & deep learning frameworks
• Deep neural networks as computational graphs

• Dynamic vs. static computational graphs

2. QuantLab & quantlib
• The deep learning development stack

• QNNs: a HW/SW co-design problem

3. Graph editing
• Tree traversal and leaf replacement

• Graph morphisms and algebraic graph rewriting



QuantLab Virtual Workshop
Part 1: computational graphs & deep learning frameworks



Graph terminology - basics

• Let 𝑉 ≠ ∅ be a set of nodes

• Graph
• 𝐺 = 𝑉, 𝐸 ⊆ 𝑉 × 𝑉
• Elements e ∈ 𝐸 are called arcs

• Undirected graph
• 𝑢, 𝑣 ∈ 𝐸 ⇒ 𝑣, 𝑢 ∈ 𝐸
• Elements 𝑒 ∈ 𝐸 are called edges

• Bipartite graph
• 𝑉 = 𝑉𝐴 ∪ 𝑉𝐵 | 𝑉𝐴, 𝑉𝐵 ≠ ∅, 𝑉𝐴 ∩ 𝑉𝐵 = ∅

• 𝐸 ⊆ ( 𝑉𝐴 × 𝑉𝐵 ∪ (𝑉𝐵 × 𝑉𝐴))
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Supervised learning: the problem

• The task is approximating an (unknown) function

𝑓∗ ∶ 𝑋 → 𝑌

• How can we assess the quality of an approximation 𝑓 ≈ 𝑓∗?

• Loss function:
ℓ ∶ 𝑌 × 𝑌 → ℝ0

+

• Loss functional:

ℒ 𝑓 ≔ න
𝑋 × 𝑌

ℓ 𝑓 𝑥 , 𝑦 𝑑𝜇(𝑥, 𝑦)



Supervised learning: the solution

• Machine learning system
• Hypothesis space

• 𝑓 ∶ Θ × 𝑋 → 𝑌 (i.e., a collection 𝑓𝜃 ∶ 𝑋 → 𝑌 𝜃 ∈ Θ})

• Rewrite ℒ 𝑓 = ℒ 𝜃 = 𝑋׬ × 𝑌
ℓ 𝑓 𝜃, 𝑥 , 𝑦 𝑑𝜇(𝑥, 𝑦)

• Data set
• 𝒟 ∶ 𝑋 × 𝑌 → ℕ0 | 0 < ∑ 𝑥,𝑦 ∈ 𝑋 × 𝑌𝒟 𝑥, 𝑦 = 𝑁 < +∞

• Approximate 𝜇 ≈
1

𝑁
∑ 𝑥,𝑦 ∈ 𝑋 × 𝑌𝒟 𝑥, 𝑦 𝛿(𝑥,𝑦)

• Learning algorithm
• If ℒ and 𝑓 are differentiable, it can be gradient-based:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ∇𝜃ℒ 𝜃𝑡 = 𝜃𝑡 − 𝜂 (
1

𝑁
∑ 𝑥,𝑦 ∈ 𝑋 × 𝑌𝒟 𝑥, 𝑦 ∇𝜃ℓ 𝑓 𝜃𝑡 , 𝑥 , 𝑦 )



Computational graphs

• Directed, bipartite graphs

• 𝑉 = 𝑉𝑀 ∪ 𝑉𝐾
• Memory nodes 𝑣 ∈ 𝑉𝑀 represent operands

• Kernel nodes 𝑣 ∈ 𝑉𝐾 represent operations

• 𝐸 ⊆ ( 𝑉𝑀 × 𝑉𝐾 ∪ (𝑉𝐾 × 𝑉𝑀))
• Arcs 𝑒 ∈ 𝐸 ∩ (𝑉𝑀 × 𝑉𝐾) represent read/load dependencies

• Arcs 𝑒 ∈ 𝐸 ∩ (𝑉𝐾 × 𝑉𝑀) represent write/store dependencies

• Each operand is the result of at most one operation:
• ∀𝑣 ∈ 𝑉𝑀, 𝑢1, 𝑣 , 𝑢2, 𝑣 ∈ 𝐸 ⇒ 𝑢1 = 𝑢2



DNNs as computational graphs: an example

𝑤2 𝜍(𝑏1 + 𝑤1𝑥0)
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DNNs as computational graphs: an example

𝑤2 𝜍(𝑏1 + 𝑤1𝑥0)

*𝑥0 + 𝜍 *

𝑤1 𝑏1 𝑤2



Three ways of performing differentiation

• Symbolic differentiation
• Based on the rules of differential calculus
• Given a function ℒ(𝜃, 𝑧), pre-compute ∇𝜃ℒ|𝜃, 𝑧 as a function of 𝜃 and 𝑧.
• Cons:

• Computing the differential automatically might be impossible for complex functions
• Computing the differential by hand can be time-consuming and is error-prone

• Numerical differentiation
• Based on the definition of derivative
• Given a function ℒ(𝜃, 𝑧), computing ℒ 𝜃 + ℎ, 𝑧 − ℒ(𝜃, 𝑧) requires two evaluations.
• Cons:

• Computers have no notion of limit operation: numerical derivatives are usually approximations computed using small values 
for ∥ ℎ ∥

• Approximation errors are more likely when 𝜃 is multi-dimensional

• Automatic differentiation
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Automatic differentiation

• Based on the chain rule

• Each operation computes the gradients with respect to its inputs

• Two modes
• Direct-mode

• Can be computed in parallel to the forward pass

• Almost always requires recomputing tensor contractions

• Reverse-mode (aka back-propagation)
• Must wait the completion of the forward pass before beginning the gradient 

computation

• Computes each product in the chain rule just once



Differentiable computational graphs

• Each operation 𝑣 ∈ 𝑉𝐾 is differentiable with respect to its operands 
𝑢 ∈ 𝑉𝑀| 𝑢, 𝑣 ∈ 𝐸

• Forward pass (aka inference pass)

• Backward pass
• This is gradient computation

• Do not confuse it with gradient descent!

* + 𝜍 * ∇𝑠2ℓ

∇𝑤1
ℓ ∇𝑏1ℓ ∇𝑤2

ℓ



Static vs. dynamic computational graphs

• Static computational graph
• Graph is fully defined before executing any 

operation (define-and-run)

• Pro: the graph’s structure is clear and easy 
to manipulate

• Cons: slower development cycle

• Dynamic computational graph
• Graph is defined at run-time depending on 

the script’s control flow (define-by-run)

• Pro: faster development cycle

• Cons: the graph’s structure might be 
obscure and cumbersome to manipulate
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A thousand flavours of computational graphs

ONNX: the “assembly” of computational graphs

*𝑥0 + 𝜍 *
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TensorFlow (v1.0 – might have changed)
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• Edges can be associated to the output memory 
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• “Nodes represent operations, edges represent data 

flowing between operations”
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A thousand flavours of computational graphs

NASBench201 data set

• Neural architecture search (NAS) is a 
deep-learning-specific variant of model 
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The deep learning development stack

Platform-agnostic

• Data analysis: how can we model the data problem?

• DNN design: which network topology can work best?

• Training: backpropagation + SGD

Platform-specific

• Graph optimisation: ONNX graph (e.g., tiling, “node fusion”)

• Code generation: from ONNX graph to C/C++ code

• Compilation: from C/C++ code to machine codeCompilation

Code generation

Graph optimisation

Training (FP)

DNN design

Data analysis
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The systems package: problem sub-package
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datautils

$ bash configure/problem.sh CIFAR10
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The systems package: topology sub-package
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QuantLab: the manager package
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The manager package

manager

platform

flows

logbook

assistants

meter

• platform: management of HW/OS aspects (e.g., GPU 
aspects, distributed processing)

• flows: the services that can be accessed from the façade

• logbook: the abstraction that mediates the interactions 
between the QuantLab flows and the disk

• assistants: the abstractions that assemble the components 
of the deep learning systems inside QuantLab flows

• meter: the abstractions to track statistics on parameters and 
features of the deep neural network being trained or tested
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QuantLab: usage overview

• Create a problem sub-package (remember to prepare the data!)

• Create a topology sub-package

• Write the working files:
• Data pre-processing and loading
• Network definition
• Output post-processing
• Quantization recipes and network controllers creators (quantize namespace)

• Write the configuration file that describes how to instantiate the system

• Run the configure flow

• Run the training flow

• Perform fake2true conversion

• Generate code for your platform (warning: this is has not been automated yet!)

ITERATE UNTIL
YOU ARE SATISFIED!



QNNs: a HW/SW co-design problem
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Platform-agnostic

• Data analysis: how can we model the data problem?

• DNN design: which network topology can work best?

• Training: backpropagation + SGD

Platform-aware

• float2fake conversion

• Post-training quantization algorithm (w/o fine-tuning)

• fake2true conversion

Platform-specific

• Graph optimisation: ONNX graph (e.g., tiling, “node fusion”)

• Code generation: from ONNX graph to C/C++ code

• Compilation: from C/C++ code to machine code
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QuantLab

systems manager quantlibmain.py



The quantlib package: overview

quantlib

algorithms

editing

backends

lightweight

graphs



The quantlib package: overview

quantlib

algorithms

editing

backends

lightweight

graphs

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis



The quantlib package: overview

quantlib

algorithms

backends

lightweight

graphs

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

editing



The quantlib package: overview

quantlib

algorithms

backends

lightweight

graphs

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

editing



The quantlib package: overview

quantlib

algorithms

backends

lightweight

graphs

Compilation

Code generation

Graph optimisation

fake2true

Quantization-aware training

float2fake

DNN design

Data analysis

editing



The quantlib package: overview

quantlib

algorithms

backends

lightweight

graphs

Compilation

Code generation
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Quantization-aware training
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DNN design
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TODAY’S EXERCISES WILL FOCUS ON THESE TOOLS
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QuantLab: usage overview

• Create a problem sub-package (remember to prepare the data!)

• Create a topology sub-package

• Write the working files:
• Data pre-processing and loading
• Network definition
• Output post-processing
• Quantization recipes and network controllers creators (quantize namespace)

• Write the configuration file that describes how to instantiate the system

• Run the configure flow

• Run the training flow

• Perform fake2true conversion

• Generate code for your platform (warning: this is has not been automated yet!)

ITERATE UNTIL
YOU ARE SATISFIED!
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Existing features:

• Configuration-based training flows

• Multi-GPU and multi-process 
support

• Integration with TensorBoard

• float2fake conversion

• Quantization-aware training 
algorithms (STE, INQ, RPR, ANA, 
PACT, SAWB)
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QuantLab: present and future

Existing features:

• Configuration-based training flows

• Multi-GPU and multi-process 
support

• Integration with TensorBoard

• float2fake conversion

• Quantization-aware training 
algorithms (STE, INQ, RPR, ANA, 
PACT, SAWB)

• fake2true conversion

Planned features:

• Data and network initialisation 
seeding

• PyTorch code generation for true-
quantized networks

• Post-training quantization

• More quantization-aware training 
algorithms

• Mixed-precision support



QuantLab Virtual Workshop
Part 3: graph editing



Graph editing in quantlib

By graph editing we refer to a collection of techniques to modify graphs

• Tree traversal and leaf replacement
• float2fake conversions

• Graph morphisms and algebraic graph rewriting
• fake2true conversions



Tree traversal and leaf replacement

• Tree: a directed graph G whose associated undirected version is 
connected and acyclic

• Rooted tree: a tree where a node has been designated to be the root; 
nodes with no incoming edges are called leaves (we assume that the 
natural orientation of arcs is towards the root)

• Tree traversal: the process by which, starting from the root of a 
rooted tree, all leaves are identified

• Leaf replacement: the process by which a leaf is replaced by another 
leaf, or by a rooted tree whose root takes the place of the leaf
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Tree traversal and leaf replacement



Graph terminology - advanced

• Source and target of an arc:
• 𝑠𝐺 ∶ 𝐸 → 𝑉, 𝑠𝐺 𝑢, 𝑣 ≔ 𝑢

• 𝑒𝐺 ∶ 𝐸 → 𝑉, 𝑠𝐺 𝑢, 𝑣 ≔ 𝑣

• Let Λ ≠ ∅ denote a set of labels

• Let ∗∈ Λ denote an undefined label

• Attributed graphs
• Node labelling 𝑙𝐺 ∶ 𝑉 → Λ

• Arc labelling 𝑚𝐺 ∶ 𝐸 → Λ



Functions between graphs

• Let 𝐿 = 𝑉𝐿, 𝐸𝐿 , 𝐻 = (𝑉𝐻, 𝐸𝐻) be graphs

• Since a graph is a pair of sets, a function 
between graphs 𝐿, 𝐻 is a pair 𝑔 = (𝑔𝑉 , 𝑔𝐸)
of functions
• 𝑔𝑉 ∶ 𝑉𝐿 → 𝑉𝐻
• 𝑔𝐸 ∶ 𝐸𝐿 → 𝐸𝐻



Preserving the information flow: morphisms

• Preserve the structural flow:
1. 𝑠𝐻 𝑔𝐸 𝑒 = 𝑔𝑉 𝑠𝐿 𝑒 , ∀𝑒 ∈ 𝐸𝐿
2. 𝑡𝐻 𝑔𝐸 𝑒 = 𝑔𝑉 𝑡𝐿 𝑒 , ∀𝑒 ∈ 𝐸𝐿

• Preserve the semantic flow:
3. 𝑙𝐻 𝑔𝑉 𝑣 = 𝑙𝐿 𝑣 , ∀𝑣 ∈ 𝑉𝐿
4. 𝑚𝐻 𝑔𝐸 𝑒 = 𝑚𝐿 𝑒 , ∀𝑒 ∈ 𝐸𝐿

• A function between graphs 𝐿, 𝐻 that 
satisfies 1. , 2. , 3. , 4. is called a morphism

• Can you think of a function between 
graphs which is not a morphism?



Algebraic graph rewriting

• Graph rewriting rule:
• Context graph
• Template graph and template core
• Replacement graph and 

replacement core

• Derivation: recursive definition: 
application or sequence of 
derivations

• Application point: a morphism; 
in practice we use type-checked 
isomorphisms
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Elevating a JIT graph to a PyTorch graph
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Light blue 
nodes are 
identified

This graph is not acyclic!

Working 
memory 
node

Prune working 
memory nodes



Projecting a computational graph



Projecting a computational graph

To memory
partition

To kernel
partition

We can work on simpler graphs!
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We hope to see you at the next edition!


