
PULP PLATFORM

Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

A Deep Dive into HW/SW Development with PULP

Robert Balas <balasr@iis.ee.ethz.ch>

Manuel Eggimann <meggimann@iis.ee.ethz.ch>

|

Introduction Round

PULP Training

Robert Balas Manuel Eggimann

13.01.2021 2

|

Introduction – Organization of this Training

PULP Training

Day 1

▪ PULPissimo SoC

Architecture

▪ Software Environment

▪ RTL Development Flow

▪ RTL Simulation/Debug

Environment

Day 2

▪ FPGA Port

▪ PULP IP Landscape

▪ Hands-on Full-stack IP

Integration Exercise

▪ PULPIssimo Memory Layout

Modification

13.01.2021 3

PULP PLATFORM

Open Source Hardware, the way it should be!

SystemVerilog Atrocities

PULP Training

13.01.20214

|

Never Import Into Scope of Compilation Unit

PULP Training

import pkg_some_other_ip::*;

module top

#(

parameter OUT_WIDTH

)(

input logic [IP_BITWIDTH-1:0] data_i;

output logic [OUT_WIDTH-1:0] data_o ;

);

endmodule

13.01.2021 5

X

|

Never Import Into Scope of Compilation Unit

PULP Training

module top

import pkg_some_other_ip::IP_BITWIDTH;

#(

parameter OUT_WIDTH

)(

input logic [IP_BITWIDTH-1:0] data_i;

output logic [OUT_WIDTH-1:0] data_o ;

);

endmodule

13.01.2021 6

|

Parameters/Constants

PULP Training

module my_ip

#(

parameter WIDTH = 32,

parameter BE_WIDTH = WIDTH/8 //could be changed

)(

input logic [WIDTH-1:0] data_i;

input logic [BE_WIDTH-1:0] be_i;

);

parameter MY_CONSTANT = 42; //I'm not a constant :-(

endmodule

13.01.2021 7

X If you want a (derived)
constant, use localparam

X

|

Paramters/Constants

PULP Training

module my_ip

#(

parameter WIDTH = 32,

localparam BE_WIDTH = WIDTH/8 //Cannot be changed

)(

input logic [WIDTH-1:0] data_i;

input logic [BE_WIDTH-1:0] be_i;

);

localparam MY_CONSTANT = 42; //I'm a constant :-)

endmodule

13.01.2021 8

|

Elaboration SystemTasks
(supported since SV-2012)

PULP Training

module my_ip

#(

parameter NR_CORES = 32

)(

input logic [WIDTH-1:0] data_i;

input logic [BE_WIDTH-1:0] be_i;

);

endmodule // my_ip

13.01.2021 9

|

Elaboration SystemTasks
(supported since SV-2012)

PULP Training

module my_ip

#(

parameter NR_CORES = 32 //Must be power of 2!

)(

input logic [WIDTH-1:0] data_i;

input logic [BE_WIDTH-1:0] be_i;

);

endmodule // my_ip

13.01.2021 10

better

|

Elaboration SystemTasks
(supported since SV-2012)

PULP Training

module my_ip

#(

parameter NR_CORES = 32 //Must be power of 2!

)(

input logic [WIDTH-1:0] data_i;

input logic [BE_WIDTH-1:0] be_i;

);

if (NR_CORES == 0 || (NR_CORES & (NR_CORES-1)) != 0)

$error("NR_CORES must");

endmodule // my_ip

13.01.2021 11

Even better

|

Includes

PULP Training

`include "macros.svh"

module my_ip

(input logic clk_i);

endmodule : my_ip

13.01.2021 12

X Don’t use
generic names!

|

Includes

PULP Training

`include "my_ip_macros.svh"

module my_ip

(input logic clk_i);

endmodule : my_ip

13.01.2021 13

Prefix all header file
names and defines with
to avoid naming
colisions and
redefinitions

|

Generate Statements

PULP Training

genvar i;

generate

for (i = 0; i < 10; i++) begin

my_subip i_subip (...)

end

endgenerate

13.01.2021 14

|

Generate Statements

PULP Training

for (genvar i = 0; i < 10; i++) begin :gen_sub_ips

my_subip i_subip…

end

13.01.2021 15

• Don’t use generate regions. They are redundant in SystemVerilog (and
Verilog 2005).

• Always label your generate blocks. Otherwise the hierarchical name is
toole-dependent!

PULP PLATFORM

Open Source Hardware, the way it should be!

An Overview on PULPissimo/ PULP SoC

|

PULPissimo

PULP Training

13.01.2021 17

|

PULPissimo

PULP Training

13.01.2021 18

|

PULPissimo Special Toplevel Signals

PULP Training

Signal Name Description

pad_xtal_in 32 kHz input clock (no internal crystal oscillator IP). Connects to internal FLLS (ASIC) or
clock managers (FPGA port).

pad_reset_n Active-low asynchronous reset (internally synchronized)

pad_bootsel Affects boot behavior according to program in bootrom.

pad_jtag_xxx Debug Access port for bus access and core debugging (single step, SW breakpoints)

▪ Be careful about parameters! They are not always supposed

to be changed or do not work anymore.

▪ There is a lot of dead code (remainings from tapeout specific

fixes and legacy code).

13.01.2021 19

|

Padframe

PULP Training

▪ Contains technology independent wrappers of IO pads

▪ Signals for each IO pad:

13.01.2021 20

Direction
(padframe perspective)

Name Description

Input oe_<padname>_i Active high output driver
enable

Output in_<padname>_o Logic signal from pad to SoC

Input out_<padname>_i Logic signal from SoC to pad

Inout pad_<padname> The actual pad signal that is
connected to the toplevel

Input pad_cfg_i Additional config signals for
pad (e.g. pulldown enable)

|

Safe Domain

PULP Training

▪ Contains logic that must not be power gated

▪ Lives in a separate module for simplified power intent

specification in CPF or UPF

▪ Modules in PULPissimo:
▪ pad_control: Multiplexes functionalities of io pads between (e.g. spi sck or gpio)

▪ Rst_gen: Synchronizes the reset signal to reference clock. Only used for modules

within safe domain that are directly clock with ref_clk.

13.01.2021 21

|

soc_domain/pulp_soc

PULP Training

▪ Wraps the actual heart of the SoC; The pulp_soc IP.

▪ Pulp_soc was designed to be the main soc fabric of all our

larger 32-bit PULP chips

▪ Contains many signals that are only used when there is an

additional multi-core cluster present

13.01.2021 22

|

soc_domain/pulp_soc

PULP Training

13.01.2021 23

Ext.
Mem

Mem
Contr.

L2
Mem

FC

I/O

So
C

 B
u

s

Mem
Bank

Mem
Bank

Mem
Bank

Mem
Bank

Tightly Coupled Data Memory

TCDM Interconnect

DMA PE#0

Instruction Cache

CIM
Accel.

Even
t U

n
it

Peripheral Interconnect

PE#1 PE#2 PE#3

SoC

Cluster

C
lu

st
er

 B
us

PULPissimo Multicore PULP

|

PULP SoC Schematic Overview

PULP Training

13.01.2021 24

|

PULPissimo Clock Domains

PULP Training

Clock Name Description Usage

ref_clk_i Signal from directly taken from
pad_xtal_in.

Connects to internal FLLs/PLLs

slow_clk_i In ASIC version, identical to ref_clk_i.
For FPGA version, passes through
glitch free clock divider since certain
boards (e.g. Genesys2) have very fast
external oscillators. This one must
always be 32kHz

• Timers
• Directly used as interrupt source

periph_clk_i One of the two fast clock. Generated
by internal FLL/PLL from ref_clk_i.

• Drives IO facing peripherals (e.g. UART, SPI, I2C)

soc_clk_i Fastest clock in the system. Generated
by second internal FLL/PLL from
ref_clk_i.

• Drives everything else (Core, memory,
interconnect) in the SoC.

13.01.2021 25

|

FC Subsystem

PULP Training

13.01.2021 26

|

SoC Peripherals

PULP Training

13.01.2021 27

|

APB SoC Control

PULP Training

Regname Description

Boot Address Contains the boot address of the core.

Fetch Enable Enables instruction fetching in the core. By default
controlled with an external signal (default 1)

Padmux Signals used by pad_control to multiplex between
dual usage of pads (GPIO or peripheral)

Pad Configuration Controls the special pad control signals when the
pad is in GPIO mode

JTAG Register

▪ APB Register File

with Global

configuration

signals for SoC

13.01.2021 28

|

L2 RAM Multibank

PULP Training

▪ Contains Wrappers for SRAM (or block memory) macros

▪ Internal address conversion
▪ Address bit truncation

▪ Offset subtraction if necessary and

▪ conversion to 32-bit word addressing (wordwidth of SRAMs is 32-bit, core takes care

of misaligned load/stores in hw)

▪ Protocol converter
▪ assign gnt = request

▪ r_valid delayed by one cycle

13.01.2021 29

|

SoC Interconnect

PULP Training

13.01.2021 30

|

TCDM Protocol

PULP Training

▪ Single cycle latency protocol

▪ Used for communication between core and memories

▪ Does not allow multiple outstanding transactions!

▪ Req must not depend on gnt, but gnt typicallcy does

combinationally depend on req.

13.01.2021 31

|

TCDM Protocol

PULP Training

13.01.2021 32

Read Transaction Write Transaction

|

SoC Interconnect

PULP Training

13.01.2021 33

PULP PLATFORM

Open Source Hardware, the way it should be!

Update: Resuming at 13:15 (food didn’t arrive in time:-)

Training resumes at 13:00

|

PULP-SDK vs PULP-RUNTIME

PULP Training

PULP-SDK

▪ Fully-featured SDK

▪ Drivers

▪ Complex

▪ FPGA support

PULP-RUNTIME

▪ Minimal bare-metal runtime

▪ Boot-to-main

▪ Only uart driver

▪ FPGA support

▪ Active

13.01.2021 35

|

PULP-RUNTIME

PULP Training

▪ crt0.S to main() with minimal initialization

▪ Only uart driver available

▪ HAL available

13.01.2021 57

|

PULP-RUNTIME - Overview

PULP Training

13.01.2021 58

|

PULP-RUNTIME – Build Flow

PULP Training

13.01.2021 59

|

PULP-RUNTIME – Hello World - Setup

PULP Training

13.01.2021 60

• Directory structure
• training/pulpissimo (v6.0.0) git clone https://www.github.com/pulp-platform/pulpissimo

• training/pulp-runtime (v0.0.6) git clone https://www.github.com/pulp-platform/pulp-runtime

• training/sw git clone https://www.github.com/pulp-training/sw

• Compiler (pulp-gcc)
• https://github.com/pulp-platform/pulp-riscv-gnu-toolchain

|

PULP-RUNTIME – Hello World - Demonstration

PULP Training

13.01.2021 61

1. Simulator location
$ source setup/vsim.sh

2. Configuration
$ source configs/pulpissimo.sh

3. Compiler
$ export PULP_RISCV_GCC_TOOLCHAIN=...

|

PULP-RUNTIME – FPGA specific

PULP Training

13.01.2021 62

1. ARCHI_FPGA_FREQUENCY

2. ARCHI_FPGA_FC_FREQUENCY

3. configs/fpgas/pulpissimo/*.sh

|

PULP-RUNTIME – Trivial Driver

PULP Training

13.01.2021 64

1. We add a trivial driver to the pulp-runtime

$ cd sw/runtime-trivial-driver

|

PULP-RUNTIME – Trivial Driver - Exercise

PULP Training

13.01.2021 65

1. Pass the second test in runtime-trivial-driver. Put the

required macro and function in a separate .c/.h file.

$ cd sw/runtime-trivial-driver

|

Exercise Time

PULP Training

▪ Join a breakout room of your choice

▪ In case you need help or have a question, visit:

https://bit.ly/37nnl8P and enqueue yourself

▪ If you cannot use Zoom to share your screen or have issues

with it: https://fisch.ddns.net/call/mhq9864w

▪ Consult https://fisch.ddns.net/sites/pulp_training for SoC

schematics and FAQ (hopefully we have time to update it

adhoc)

13.01.2021 66

https://bit.ly/37nnl8P
https://fisch.ddns.net/call/mhq9864w
https://fisch.ddns.net/sites/pulp_training

|

PULP-RUNTIME - Reggen

PULP Training

13.01.2021 67

▪ Open-Source

▪ Used in tapeout

▪ Single source of truth

▪ Easier hw/sw co-design

▪ Lowrisc IP supported

|

PULP-RUNTIME – Reggen – PULP patches

PULP Training

13.01.2021 68

▪ We at ETH added some patches
▪ Tilelink is rather complicated and we don’t use it

▪ Add support for register_interface (simple protocol to access register)

▪ Lots of protocol converters (AXI, APB, TCDM (partial)) and CDC

▪ «reg» keyword to hjson

|

PULP-RUNTIME – Reggen - Demonstration

PULP Training

13.01.2021 69

1. We show how the hjson description looks like

2. We generate a header file and SystemVerilog code from it

3. We use it a small program

$ cd sw/runtime-reggen

|

PULP-RUNTIME – Reggen - Exercise

PULP Training

13.01.2021 70

1. Integrate the generated header file into pulp-runtime

2. Try to generate documentation from the hjson description

3. Explore the --help options

|

PULPissimo – Booting

PULP Training

13.01.2021 71

1. Boot procedure

2. Introduction to Linkerscripts

3. Boot code, compile and link

|

PULPissimo – Boot procedure

PULP Training

13.01.2021 72

|

PULPissimo – Introduction to Linkerscripts

PULP Training

13.01.2021 73

• Compiler groups instructions and data in sections
• .text = instructions

• .data = initialized variables

• .bss = zero initialized variables

• .rodata = read only data

• Linkerscript = Set of rules on how to map sections to
memory

|

PULPissimo – Bootcode - Demonstration

PULP Training

13.01.2021 74

$ cd boot_code/

PULP PLATFORM

Open Source Hardware, the way it should be!

RTL Development Flow / Tools

|

IP Dependency Management (IPApprox)

PULP Training

▪ Transitively resolves Dependencies between IPs

▪ Automatically checks out sub IP repositories

▪ Manages tool and target specific file sets

▪ Generates analyzes and elaborate scripts for simulation,

ASIC & FPGA Synthesis

▪ Called by two python scripts (in PULPissimo they are called

update_ips & generate_scripts)

13.01.2021 77

|

IPApprox

PULP Training

13.01.2021 78

|

IPApprox Questasim Output

PULP Training

13.01.2021 79

|

IPApprox FPGA Output

PULP Training

13.01.2021 80

|

IPApprox Development Flow

PULP Training

Toplevel Modifications
1. If modification is in the toplevel, just update src_files.yml in RTL directory.

Independent Sub-IP Modifications
1. modify the IP in the checked out IPs directory on a new feature branch

2. Change the version in the dependent IPs to the new feature branch

3. If you add new dependencies, you have to commit and push the changes to the

ips_list.yml

4. Run update-ips to resolve newly added dependencies and generate the new tcl files

for simulation and synthesis

5. Once your changes are stable, commit and tag them and change version in all

dependent packages to the new commit/release tag

13.01.2021 81

|

IPApprox Exercise – Integration of a Dummy VIP

PULP Training

Time to try it yourself:

▪ In this little exercise you are going to practice the IP

integration flow using IPApprox

▪ Source files and Exercise description on:

https://github.com/pulp-training/dummy_vip

13.01.2021 82

https://github.com/pulp-training/dummy_vip

|

IP Dependency Management (Bender)

PULP Training

▪ Transition planed in the next couple of weeks

▪ Written in rust

▪ Better Documentation

▪ More stable dependency resolution and conflict management

▪ (Yet) not flexible enough for subrepo flow used for pulp_soc

13.01.2021 83

PULP PLATFORM

Open Source Hardware, the way it should be!

Simulation and Debug Flow

PULP Training

13.01.202184

|

Build Flow of RTL Platform

|

Simulation Invocation

PULP Training

13.01.2021 86

|

Final Exercise/Homework ☺

PULP Training

▪ Development of pulp-runtime application (driver interaction)

▪ Training of RTL debugging skils around PULPissimo

▪ You find the Exercise Files on:
https://github.com/pulp-training/sw/tree/main/configure_fll_debug_rtl

▪ This is a more involved exercise and requires some code

exploration skills. Don’t hesitate to ask if you have troubles.

13.01.2021 88

https://github.com/pulp-training/sw/tree/main/configure_fll_debug_rtl

|

We would appreciate your Feedback!

PULP Training

▪ Please let us know what you thought of this first training day

by filling the feedback form below:

https://bit.ly/2KbDchO

13.01.2021 89

PULP PLATFORM

Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

PULP Training Day 2

Robert Balas <balasr@iis.ee.ethz.ch>

Manuel Eggimann <meggimann@iis.ee.ethz.ch>

|

Programm of Day 2
Day 2

▪ FPGA Port

▪ PULP IP Landscape

▪ PULPIssimo Memory Layout Modification

▪ Hands-on Full-stack IP Integration Exercise

PULP PLATFORM

Open Source Hardware, the way it should be!

FPGA Port

|

Folder Structure
− fpga
− pulpissimo (contains auto generated tcl script form IPApprox)

− pulpissimo-<fpga-board>

− rtl (port specific source files, i.e. wrappers for block RAM or clock managers)

− ips
− <ips_instantied by wrappers in rtl dir>

− tcl (contains script to generate IP independent of PULPissimo)

|

FPGA Bitstream Generation

PULP Training

13.01.2021 94

|

FPGA Synthesis Flow - Wrappers

PULP Training

Name Description

xilinx_pulpissimo.sv Toplevel wrapper of the whole pulpissimo. Converts differential clock input to
single ended clock for pad_xtal_in.

pulp_clock_gatinx_xilinx.sv Dummy clock gating cell. Must be replaced with a correct implementation for
peripherals to work.

pad_functional_xilinx.sv Wrapper for IOBUF cells

fpga_bootrom.sv Dummy implementation. Hardwired to always respond with jal x0,0

fpga_clk_gen.sv Wrapper for Xilinx clock manager generates soc_clk and periph_clk from
reference clock. Not at-runtime configurable

fpga_interleaved_ram.sv Wrapper for blockram macro generated by IP make targets

fpga_private.sv Same as above

fpga_slow_clk_gen.sv Certain FPGA boards have extremely high input frequencies (e.g. Genesys2). This
wrapper instantiates PLL to slow down to intermediate freq (256*32768Hz) and
feeds it to divide by 256 clock divider. Xilinx clock managers cannot go slower than
4.69MHz, that’s why.

13.01.2021 95

|

FPGA Simulation Tipps

PULP Training

▪ Use ILA Cores on bus signals

▪ Problems of ILA cores and Genesys2 board (jtag frequency)

13.01.2021 96

|

Techcells

PULP Training

▪ Contain technology dependent cells like clock gates for

manual instantiation in design

▪ Must be replaced with tech-specific module implementations

that internally instantiate the library cells

▪ I.e. create a new IP with the replaced modules that depends

on techcells_generic (this forces correct compile-order and

module override behavior)

13.01.2021 97

|

Techcells

PULP Training

Generic SRAM Clk AND Clk Buffer

Glitch-free Clk
Gate

Clk Inverter
Clk Mux (clk

bypass)

Clk Xor (freq.
doubler)

Programmable
Clk Delay

(glitch filtering)
13.01.2021 98

|

Common Cells

PULP Training

▪ Contains commonly used high-level modules that are

independent of technology

▪ Contains Verilog Macros for uniform declaration of registers

▪ Contains a couple of commonly used assertion macros

13.01.2021 99

|

Common Cells

PULP Training

Clk Divider, Rst Synchronizer

CDC Crossings

• Gray FIFO,

• 2phase HS

• Edge Detector

• Serial Synchronizers

Counters

• Delta Counter

• LFSRs

Datapath Elements

• Address Decoder (Heavily used in
soc_interconnect)

• ECC Decoder/Encoder

• Gray2Binary/Binary2Gray

• Leading Zero Counter

• Stream (ready-valid pipeline) Building
Blocks

Data Structures

• Counting Bloom Filter

• FIFO

• SRAM Behavioral

• Pseudo Least Reccently Used Tree

13.01.2021 100

|

AXI IPs

PULP Training

Width Converters Mux/Demux

Protocol
Converters (APB,
AXI-Lite, Atomics

Filter

Fully-Connected
XBAR (AXI or AXI-

Lite)

Clock Domain
Crossings

Pipeline Regs

Burst Splitter Slave Isolator Address Rewriter

13.01.2021 101

|

Exercise Time

PULP Training

▪ Clone/Pull the latest changes of the exercise repo (there are new changes since yesterday):

https://github.com/pulp-training/sw

▪ Switch to the memlayout-exercise and follow the instructions on:

https://github.com/pulp-training/sw/tree/main/memlayout-exercise

▪ Join a breakout room of your choice

▪ In case you need help or have a question, visit:

https://bit.ly/37nnl8P and enqueue yourself

▪ If you cannot use Zoom to share your screen or have issues with it:

https://fisch.ddns.net/call/mhq9864w

▪ Consult https://fisch.ddns.net/sites/pulp_training for SoC schematics and FAQ (hopefully we have

time to update it adhoc)

▪We will continue at 13:15
13.01.2021 102

https://github.com/pulp-training/sw
https://github.com/pulp-training/sw/tree/main/memlayout-exercise
https://bit.ly/37nnl8P
https://fisch.ddns.net/call/mhq9864w
https://fisch.ddns.net/sites/pulp_training

|

Full-stack AXI IP Integration

PULP Training

1. Write memory map description of IP in HJSON

2. Generate register-file using reggen

3. Develop wrapper that instantiates reg-file, IP, protocol converters

and (if at all necessary) additional glue logic

4. Package and register IP using IPApprox

5. Instantiate wrapped IP in pulpissimo, modify

soc_interconnect_wrap.sv, soc_mem_map.svh

6. Generate header file and develop driver

7. Test integration in RTL Simulation

13.01.2021 103

|

Exercise Time

PULP Training

▪ Clone/Pull the latest changes of the exercise repo (there are new changes since yesterday):

https://github.com/pulp-training/sw

▪ Open the exercise instructions on Github:

https://github.com/pulp-training/sw/tree/main/fullstack_ip_integration

▪ Join a breakout room of your choice

▪ In case you need help or have a question, visit:

https://bit.ly/37nnl8P and enqueue yourself

▪ If you cannot use Zoom to share your screen or have issues with it:

https://fisch.ddns.net/call/mhq9864w

▪ Consult https://fisch.ddns.net/sites/pulp_training for SoC schematics and FAQ (hopefully we have

time to update it adhoc)

▪We will wrap things up at 17:37
13.01.2021 104

https://github.com/pulp-training/sw
https://github.com/pulp-training/sw/tree/main/fullstack_ip_integration
https://bit.ly/37nnl8P
https://fisch.ddns.net/call/mhq9864w
https://fisch.ddns.net/sites/pulp_training

