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PULP Simulator and SDK

Pulp Architecture
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PULP Simulator and SDK

RISCY and PULP Toolchain
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PULP Simulator and SDK

GVSoC - PULP Simulator
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Potentially could simulate every PULP Platforms, building blocks thanks to its
Instruction Set Simulator based on RISCV and PULP Extensions
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GVSoC - Features

= Virtual platform features:

= C++ for fast native simulation Many more details in gvsocC

= Python for instantiation + JSON for configuration documentation

= Complete set of traces to see what happen _ .
« Timing model: https://qvsoc.readthedocs.i

= Fully-event based, instances can generate events at o/en/latest/ about the

specific time concepts (not updated for
= |ncludes timing models for interconnects, DMACs, all the commands)

memories...
= Performance counters for information from the execution

= Simulation performance:
= Around 1MIPS simulation speed

» Functionally aligned and calibrated with HW
= Timing accuracy is within 10-20% of target HW



https://gvsoc.readthedocs.io/en/latest/
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PULP Simulator and SDK

PULP Software Environment

Building/Compiling
SDK

JSON Files
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RTL Platform
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PMSIS - PULP Runtime

Application
Device features
Native RTOS _ (camera....)
features Chip features
(threading, (SPI, DA, PMSIS BSP

native SPI ...) PMU ...) hyperram, hyperflash

PMSIS Drivers

RTOS (freertos, pulpos, zephyr) Hyperbus, Uart, DMA, cluster ...
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PULP-SDK - Directory organization

2,
-

= rtos/ = Contains runtime code and every

= pmsis functions of the software stack

" pulpos = Contains configuration files, python
= tools/ generators, pulp runner and every

" gap-configs gvsoc model and components

" gapy

" gusoc = Contains small examples to test few
. tests/ basic pulp features on GVSoC
= applications/ = Contains relevant example

applications such as MobileNetV1
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PULP Simulator and SDK

PMSIS APIs — Documentation

= A documentation at GreenWaves-
Technologies manuals web page ==
(https://greenwaves-
technologies.com/manuals/BUILD/PMSIS A
Pl/html/md __home _yao gap_sdk rtos pms - s
is_pmsis_api_docs_mainpage.html)

= APIs description and functionalities are -
also briefly explained in header files, i

located in the
rtos/pmsis/pmsis_api/include/pmsis
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https://greenwaves-technologies.com/manuals/BUILD/PMSIS_API/html/md__home_yao_gap_sdk_rtos_pmsis_pmsis_api_docs_mainpage.html
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Requirements — PULP Toolchain

= PULP toolchain is available at https://github.com/pulp-
platform/pulp-riscv-gnu-toolchain

= On Ubuntu 18.04 this packages should be required and you
can install them with:

= $ sudo apt-get install autoconf automake autotools-dev curl libmpc-dev libmpfr-dev
libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev
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https://github.com/pulp-platform/pulp-riscv-gnu-toolchain

PULP Simulator and SDK

Installation — PULP Toolchain

= To install the PULP toolchain follow these steps:
= § git clone https://github.com/pulp-platform/pulp-riscv-gnu-toolchain
= $ cd pulp-riscv-gnu-toolchain
= $ git submodule update --init --recursive
= § export PATH=<INSTALL_DIR>/bin:3PATH

= § /configure --prefix=<INSTALL_DIR> --with-arch=rv32imc --with-cmodel=medlow --
enable-multilib

= § make

2,
-

= More details at https://github.com/pulp-platform/pulp-riscv-
gnu-toolchain



https://github.com/pulp-platform/pulp-riscv-gnu-toolchain
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Requirements — PULP-SDK

= PULP-SDK is available at https://github.com/pulp-
platform/pulp-sdk

= On Ubuntu 18.04 this packages should be required and you
can install them with:

= $ sudo apt-get install -y build-essential git libftdi-dev libftdi1 doxygen python3-pip
libsdl2-dev curl cmake libusb-1.0-0-dev scons gtkwave libsndfile1-dev rsync autoconf
automake texinfo libtool pkg-config libsdI2-ttf-dev
= You may have needed of other python3 packages and you
can install them with:
= $ pip install argcomplete pyelftools six


https://github.com/pulp-platform/pulp-sdk
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Installation — PULP-SDK

» To install the PULP-SDK follow these steps:
= § git clone https://github.com/pulp-platform/pulp-sdk
= § export PULP_RISCV_GCC_TOOLCHAIN=<INSTALL_DIR>
= § cd pulp-sdk
= $ source configs/pulp-open.sh
= $ make build

= More details at https://github.com/pulp-platform/pulp-sdk



https://github.com/pulp-platform/pulp-sdk
https://github.com/pulp-platform/pulp-sdk
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Setup the environment for GVSoC execution

= Assuming that PULP Toolchain and PULP-SDK are correctly
built and installed

= $ cd pulp-sdk/
= Setting up PULP Toolchain path
= $ export PULP_RISCV_GCC_TOOLCHAIN=<INSTALL_DIR>

= Setting up the environment sourcing a configuration file
= § source configs/pulp-open.sh

= Build and compile GVSoC (if target or GVSoC is changed)
= $ make build

03/03/2021
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Run first simple test: An Hello from PULP!

"pmsis.h"

(CLUSTER)

| > cd tests/hello
it o o > make clean all run VERBOSE=1

oid *arg)

m fork((NUM_CORES), pe entry, 0);

Have a look at the Makefile

APP test

<CLU5TER) Make Optlons APP_SRCS +- test.c

ruct pi_device cluster dev;

pi cluster conf cl conf; USE CLUSTER
struct pi_cluster_ task cl_task; APP_CFLAGS -DCLUSTER -DNUM CLUSTER=# (USE CLUSTER
NUM CORES
APP_CFLAGS -DNUM CORES=% (NUM CORES
pi cluster open(&cluster _dev))

APP_CFLAGS -DNUM_CORES=1

r send task to cl(&cluster dev, pi cluster task(&cl task, cluster entry, NULL
APP_CFLAGS -0s -g
APP_LDFLAGS -0s -g

(CLUSTER) -
Hello from FC\n"); RULES DIR)/pmsis rules.mk

Compiler flags

Rules to make target
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Run first simple test: An Hello from PULP!

—, Include all runtime basic

‘ functions and libraries

printf("\nHello from cluster id:

(rtos/pulpos/common/)

L team fork((NUM CORES), pe entry, 0);

entry()

(CLUSTER)
struct pi_device cluster dev;
struct pi cluster conf cl conf;
truct pi_cluster task cl_task;

init(&cl_conf);

f(&cluster dev, &cl conf);
pen(&cluster_dev))

cl{&cluster dev, pi cluster task(&cl task, cluster entry, NULL));

uster _send task to
uster close(&cluster dev);

(CLUSTER)

; —, An Hello from fabric
controller

d *)test kickoff);

03/03/2021
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Run first simple test: An Hello from PULP!

— An Hello from every core

Task fork on settable
number of cores

— (Cluster call, offload and
close

r_entry, NULL));

: TIY: > cd tests/hello
o >make clean all run USE_CLUSTER=1 NUM_CORES=8

03/03/2021
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Disassembled — Show the real code

= § cd tests/hello
= $ make clean all
= $ make dis > test.s

Disassembly of section .text:

1c00809c <test kickoff>:
1cO0809c:
1c0080a0:
1c0080az2:
1c0080ab6:
1c0080a8:
1cO080aa:
1c0080ae:
1cO080DO:
1c0080b4:

1c001537
1141
86850513
c606
2a8d
1c0017b7
4501
0cO7a023
2259

1c0080b6 <main>:

1c0080b6:
1c0080b8:
1c0080ba:

TIY: > cd tests/hello

> make clean all USE CLUSTER=1 CORES=8

> make dis > test.s

1141
c606
37cd

lui a0,0x1cO01

addi

lui

Sw

addi

SW

jal 1c0082la <puts>

a0,a0,-1944 # 1c000868 < DTOR END >

sp,sp,-16

ra,12(sp)

a5,0x1cO01

11

ab,0

zero,192(a5) # 1c0010cO < edata>

jal 1c00823a <exit>

addi
SwW

jal 1c00809c <test kickoff>

sp,sp,-16

ra,12(sp)
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= § cd tests/hello Jsys/board/chip/<PATH>

= $ make clean all run
runner_args="--
trace=<PATH>:log.txt"

cluster/pe0

cluster/event_unit

= |f <PATH>=.% every trace clusteripcahe
will be dumped in clusterT oo
BUILD/PULP/GCC_RISCV/  dusteritibankx
log.txt file. HUGE! s0c/12

cluster/dma

System Traces — What is it doing?

Description

Processing element, useful to see the
|Os made by the core, and the
instruction it executes. You can

add /iss to just get instruction events

Hardware synchronizer events, useful
for debugging inter-core
synchronization mechanisms

Shared program cache accesses
Shared L1 interconnect

L1 memory banks (the X should be
replaced by the bank number)

L2 memory accesses

DMA events

03/03/2021
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Understanding GVSoC System Traces

= 4890000: 489: [/sys/board/chip/soc/cluster/pel/insn] M 1c001252 p.sw 0, 4(a5!) a5=10000010 a5:1000000c PA:1000000c

2,
-

= <timestamp> <cycles> <path> <address> <instruction> <operands> <operands info>

= Where:

= <timestamp> is the timestamp of the event in picoseconds

= <cycles> is the number of cycles

= <path> is the path in the architecture where the event occurred

= <address> is the address of the instruction

= <instruction> is the instruction label

= <operands> is the part of the decoded operands

= <gperands info> is giving details about the operands values and how they are used
* The timestamp is absolute. The cycle count is local to the frequency domain

03/03/2021
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Understanding GVSoC System Traces

= 4890000: 489: [/sys/board/chip/soc/cluster/pel/insn] M 1c001252 p.sw 0, 4(a5!) a5=10000010 a5:1000000c PA:1000000c

= <timestamp> <cycles> <path> <address> <instruction> <operands> <operands info>

TIY: > cd tests/hello
> make clean all run runner_args="--trace=insn”
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A little bit complex: Vector x Vector
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= Compute the partial output
results in the core, taking the
input data from L2 memory and
then store them back in L2
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Performance counters

tMat();
PRINT MATRIX
rntf(" This 1s the Matrix A
trix(A, N);
tr(" This is the Matrix B
I1x(B, N);
STATS

{

Ten s Select type of
’ performance to measure

Start the counting

read (PI_PERF INSTR);

| d(PT_PERF CYCLES); ) Stop and read

Clock Cycles:
[) cycles cnt/instr cnt);

03/03/2021
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Performance counters

tHaty).;

PRINT MATRIX
rintr("” This 1s the Mat:
trix(A, N);
tf(" This is the Matnri B
Ix(8, N);

STATS
{

<< P1 PERF CYCLES |
<< PI PERF INSTR

ad (PI_PERF INSTR);
yd(PI PERF CYCLES);

Clock Cycles:

[) cycles cnt/instr cnt);

TIY: > cd tests/perf/matmult

> make clean all run

Application to evaluate

03/03/2021
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Performance counters

ypedef enum
PI PERF CYCLES

[rtos/pmsis/pmsis_api/include/pmsis/
e chips/default.h

PI PERF LD STALL
PI_PERF JR STALL
PI_PERF IMISS

PI PERF LD

PI PERF ST

PI PERF JUMP

e oy Real chips have only 1 counter to
be activated at the same time
b while other platforms could have
Rl s e 4 one per event

PI_PERF TCDM CONT

PI PERF ST EXT
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Performance counters

ST s TIY: > cd tests/perf/matmult

pr - > make clean all run VERBOSE_PERF=1

f(
<< P1 PERF CYCLES |
<< PI PERF INSTR

SPOILER: Load stalls are the

problem of the differences between
broikealirati), 8, temc, W Instructions and cycles!

rt read(PI PERF INSTR);
yd(PI PERF CYCLES);

Cloc Lycles: (
( 1L) cycles cnt/instr cnt);

03/03/2021
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A little bit complex: Ram Transfers

= First compute the partial output
results in the core, taking the
input data from L2 memory and
then store them back in L2

= Copy partial output results in
HYPERRAM, going through™

the LIC, uDMA and then
HyperBus
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Ram Transfers — Sync or Async

espt, | W),
buff+i*N BYTE, te B

—————— synchronous

wifer 1d4)], | t) N BYTE, 1 task sl lback{&ram write tasks|i prev], end of tx,

*N_BYTE, &tempC[N WORD*buffer id], (uvint £) N_BYTE, tash pack(&rom writ

—————— asynchronous

How can we choose between them?
= |et's see again the performance

TIY: > cd tests/perf/double_buffering
> make clean all run DB=1
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MDMA Messages

Judma/t m] W ock-enable register (current value
fudma/ ém] De ing periph (periph: 1)
udna/ om| (offset: OxB, size: Ox4, is write
| / udna/ £ énl W s (oTTset BxB, size: Bx4, 15 write
3614086176: &7 4o | 34m/sys/board/chip/soc/udna/trace [6m] k-enable register
3614086176: & i | 34m/sys/ /chip/soc/udna/ ce ] Acti riph (periph: 7)
3615644496 a7 | [ 34 ip/soc/udma/trac ém] UDMA acc (offset: Gx608, s
Judsa/trac 1 UDMA
Judna/Lrac UDMA
Judma/trac ém| UDMA
/udma/trace f UDMA
udma/t
fudma/t
ugnma
) /udng/
319851968: 87481: | { 3dm/ ) /chip/soc/udna/
620027271: 490: | [34m, hip/soc/udma/
d i ¢ E udma/t
8533725: ¢ S | D /soc/udm
20533725 3 6: | 34m/ 3 hip/soc/udna/hyper@
8799636 { | 34m, . ard/chip/soc/udn race UbDMa
fudma/trace UDMA
Judna/hypere ACCes
/udma/ ] UDMA
fudma/hy
/udma/
Judna/
ontinuous
from 8 (cf

er (req:

the activation of the hyperbus module to the
enqueueing of the first request are passed 382 yDMA
cycles and 7,441 us
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MDMA Messages

(current value
(periph 1)
0xB, size:

ucna/

uana/

= SEEIEEREIEY BUILDIPULPRISCY.
' ;. GCCludma.txt

fudna/

—
<

> cd tests/perf/double_buffering
> make clean all run DB=1 runner_args="--trace=soc/udma:udma.txt”

03/03/2021
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VCD Traces — More human readable

= Many more details in the gvsoc documentation
https://qvsoc.readthedocs.io/en/latest/vcd_traces.html#

about the concepts (not updated for all the commands)
= § cd tests/perf/double_buffering
= $ make clean all run runner_args="--vcd”

2,
-

= This command will create a VCD file at
BUILD/PULP/RISCV _GCCl/all.ved and a file at
BUILD/PULP/RISCV_GCC/view.gtkw

= Terminal will print out the command to open the latter with
Gtkwaves



https://gvsoc.readthedocs.io/en/latest/vcd_traces.html
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VCD Traces — More human readable

= Many more details in the gvsoc documentation
https://qvsoc.readthedocs.io/en/latest/vcd_traces.html#
about the concepts (not updated for all the commands)

= § cd tests/perf/double_buffering
= $ make clean all run runner_args="--vcd”

2,
-

TIY: > cd tests/perf/double_buffering
> make clean all run DB=1 runner_args=“--vcd”
> gtkwave <INSTALLATION_PATH>/pulp-
sdk/tests/hello/BUILD/PULP/GCC_RISCV/view.gtkw



https://gvsoc.readthedocs.io/en/latest/vcd_traces.html
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VCD Traces - uDMA vs. CORE

That duration corresponds (at 50MHz and for 500
transitions) to about 995k cycles

|
While the difference (in cﬁlcles) between both
implementations is 990k (from performance counters)




