@

) PULP PLATFORM

Open Source Hardware, the way it should be!

PULP Simulator and SDK

Nazareno Bruschi <nazareno.bruschi@unibo.it>
Germain Haugou <germain.haugou@iis.ee.ethz.ch>

ETH:zurich

'u} http://pulp-platform.org ’ @pulp_platform u https://www.youtube.com/pulp_platform

PULP Simulator and SDK

Pulp Architecture

1 Ext.
: Mem |
l

i
(&)
(<)
(e
{ =
o
(&)
S
D
e
=

PULP Simulator and SDK

RISCY and PULP Toolchain

[vdata 0], o)
RISC-V core = addr o [O
S +—>0pA —/ rdata i 2
[P ~. "\ CSR kot =
o Controller PC (0P8 A U S
i o
F;efetc L npC ~{ex [oA ALY A || £
. Decoder LT {WB OpB RD ' -
% =M 0pC B\IV >
— iy ez nullig 3
(O Fl KSn oas—w | [38‘32 MULT _ EX -
i 3 |'P| "¢ DCO—Tre EX " MAC WB 2
‘tq:) control Z . [oo} bl | 20pC A IL—)
- o) —>DIB P4
= | Sty o
i —— M : 3
g§§ Debug Unlt[}; o 1L 30,35 Bgittp RD}_‘
- A Lt OpC
8 JA { o - \ T / A
\ 2 L - J

PULP Simulator and SDK

GVSoC - PULP Simulator

RiscY || oex i snitch [Ariane
32b 32b 32b 64b APB — Peripheral Bus

AXl4 - Interconnect
[, |
[

N
N .
interconnect

[1 [

interconnect

HiE

interconnect

Potentially could simulate every PULP Platforms, building blocks thanks to its
Instruction Set Simulator based on RISCV and PULP Extensions

03/03/2021

PULP Simulator and SDK

GVSoC - Features

= Virtual platform features:

= C++ for fast native simulation Many more details in gvsocC

= Python for instantiation + JSON for configuration documentation

= Complete set of traces to see what happen _ .
« Timing model: https://qvsoc.readthedocs.i

= Fully-event based, instances can generate events at o/en/latest/ about the

specific time concepts (not updated for
= |ncludes timing models for interconnects, DMACs, all the commands)

memories...
= Performance counters for information from the execution

= Simulation performance:
= Around 1MIPS simulation speed

» Functionally aligned and calibrated with HW
= Timing accuracy is within 10-20% of target HW

https://gvsoc.readthedocs.io/en/latest/

2,
-

PULP Simulator and SDK

PULP Software Environment

Building/Compiling
SDK

JSON Files

i
]

Python Generators

GVSoC

C++ C++
Models Engines

Compiling App

C App
Code

Executing App

GVSoC

JSON Files C++ Models

RTL Platform

Board/FPGA

03/03/2021

PULP Simulator and SDK

PMSIS - PULP Runtime

Application
Device features
Native RTOS _ (camera....)
features Chip features
(threading, (SPI, DA, PMSIS BSP

native SPI ...) PMU ...) hyperram, hyperflash

PMSIS Drivers

RTOS (freertos, pulpos, zephyr) Hyperbus, Uart, DMA, cluster ...

PULP Simulator and SDK

PULP-SDK - Directory organization

2,
-

= rtos/ = Contains runtime code and every

= pmsis functions of the software stack

" pulpos = Contains configuration files, python
= tools/ generators, pulp runner and every

" gap-configs gvsoc model and components

" gapy

" gusoc = Contains small examples to test few
. tests/ basic pulp features on GVSoC
= applications/ = Contains relevant example

applications such as MobileNetV1

03/03/2021

2,
-

PULP Simulator and SDK

PMSIS APIs — Documentation

= A documentation at GreenWaves-
Technologies manuals web page ==
(https://greenwaves-
technologies.com/manuals/BUILD/PMSIS A
Pl/html/md __home _yao gap_sdk rtos pms - s
is_pmsis_api_docs_mainpage.html)

= APIs description and functionalities are -
also briefly explained in header files, i

located in the
rtos/pmsis/pmsis_api/include/pmsis

03/03/2021

https://greenwaves-technologies.com/manuals/BUILD/PMSIS_API/html/md__home_yao_gap_sdk_rtos_pmsis_pmsis_api_docs_mainpage.html

R4

PULP Simulator and SDK

Requirements — PULP Toolchain

= PULP toolchain is available at https://github.com/pulp-
platform/pulp-riscv-gnu-toolchain

= On Ubuntu 18.04 this packages should be required and you
can install them with:

= $ sudo apt-get install autoconf automake autotools-dev curl libmpc-dev libmpfr-dev
libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev

03/03/2021

https://github.com/pulp-platform/pulp-riscv-gnu-toolchain

PULP Simulator and SDK

Installation — PULP Toolchain

= To install the PULP toolchain follow these steps:
= § git clone https://github.com/pulp-platform/pulp-riscv-gnu-toolchain
= $ cd pulp-riscv-gnu-toolchain
= $ git submodule update --init --recursive
= § export PATH=<INSTALL_DIR>/bin:3PATH

= § /configure --prefix=<INSTALL_DIR> --with-arch=rv32imc --with-cmodel=medlow --
enable-multilib

= § make

2,
-

= More details at https://github.com/pulp-platform/pulp-riscv-
gnu-toolchain

https://github.com/pulp-platform/pulp-riscv-gnu-toolchain

2,
-

PULP Simulator and SDK

Requirements — PULP-SDK

= PULP-SDK is available at https://github.com/pulp-
platform/pulp-sdk

= On Ubuntu 18.04 this packages should be required and you
can install them with:

= $ sudo apt-get install -y build-essential git libftdi-dev libftdi1 doxygen python3-pip
libsdl2-dev curl cmake libusb-1.0-0-dev scons gtkwave libsndfile1-dev rsync autoconf
automake texinfo libtool pkg-config libsdI2-ttf-dev
= You may have needed of other python3 packages and you
can install them with:
= $ pip install argcomplete pyelftools six

https://github.com/pulp-platform/pulp-sdk

PULP Simulator and SDK

Installation — PULP-SDK

» To install the PULP-SDK follow these steps:
= § git clone https://github.com/pulp-platform/pulp-sdk
= § export PULP_RISCV_GCC_TOOLCHAIN=<INSTALL_DIR>
= § cd pulp-sdk
= $ source configs/pulp-open.sh
= $ make build

= More details at https://github.com/pulp-platform/pulp-sdk

https://github.com/pulp-platform/pulp-sdk
https://github.com/pulp-platform/pulp-sdk

PULP Simulator and SDK

2,
-

Setup the environment for GVSoC execution

= Assuming that PULP Toolchain and PULP-SDK are correctly
built and installed

= $ cd pulp-sdk/
= Setting up PULP Toolchain path
= $ export PULP_RISCV_GCC_TOOLCHAIN=<INSTALL_DIR>

= Setting up the environment sourcing a configuration file
= § source configs/pulp-open.sh

= Build and compile GVSoC (if target or GVSoC is changed)
= $ make build

03/03/2021

PULP Simulator and SDK

Run first simple test: An Hello from PULP!

"pmsis.h"

(CLUSTER)

| > cd tests/hello
it o o > make clean all run VERBOSE=1

oid *arg)

m fork((NUM_CORES), pe entry, 0);

Have a look at the Makefile

APP test

<CLU5TER) Make Optlons APP_SRCS +- test.c

ruct pi_device cluster dev;

pi cluster conf cl conf; USE CLUSTER
struct pi_cluster_ task cl_task; APP_CFLAGS -DCLUSTER -DNUM CLUSTER=# (USE CLUSTER
NUM CORES
APP_CFLAGS -DNUM CORES=% (NUM CORES
pi cluster open(&cluster _dev))

APP_CFLAGS -DNUM_CORES=1

r send task to cl(&cluster dev, pi cluster task(&cl task, cluster entry, NULL
APP_CFLAGS -0s -g
APP_LDFLAGS -0s -g

(CLUSTER) -
Hello from FC\n"); RULES DIR)/pmsis rules.mk

Compiler flags

Rules to make target

03/03/2021

PULP Simulator and SDK

Run first simple test: An Hello from PULP!

—, Include all runtime basic

‘ functions and libraries

printf("\nHello from cluster id:

(rtos/pulpos/common/)

L team fork((NUM CORES), pe entry, 0);

entry()

(CLUSTER)
struct pi_device cluster dev;
struct pi cluster conf cl conf;
truct pi_cluster task cl_task;

init(&cl_conf);

f(&cluster dev, &cl conf);
pen(&cluster_dev))

cl{&cluster dev, pi cluster task(&cl task, cluster entry, NULL));

uster _send task to
uster close(&cluster dev);

(CLUSTER)

; —, An Hello from fabric
controller

d *)test kickoff);

03/03/2021

PULP Simulator and SDK

Run first simple test: An Hello from PULP!

— An Hello from every core

Task fork on settable
number of cores

— (Cluster call, offload and
close

r_entry, NULL));

: TIY: > cd tests/hello
o >make clean all run USE_CLUSTER=1 NUM_CORES=8

03/03/2021

PULP Simulator and SDK

Disassembled — Show the real code

= § cd tests/hello
= $ make clean all
= $ make dis > test.s

Disassembly of section .text:

1c00809c <test kickoff>:
1cO0809c:
1c0080a0:
1c0080az2:
1c0080ab6:
1c0080a8:
1cO080aa:
1c0080ae:
1cO080DO:
1c0080b4:

1c001537
1141
86850513
c606
2a8d
1c0017b7
4501
0cO7a023
2259

1c0080b6 <main>:

1c0080b6:
1c0080b8:
1c0080ba:

TIY: > cd tests/hello

> make clean all USE CLUSTER=1 CORES=8

> make dis > test.s

1141
c606
37cd

lui a0,0x1cO01

addi

lui

Sw

addi

SW

jal 1c0082la <puts>

a0,a0,-1944 # 1c000868 < DTOR END >

sp,sp,-16

ra,12(sp)

a5,0x1cO01

11

ab,0

zero,192(a5) # 1c0010cO < edata>

jal 1c00823a <exit>

addi
SwW

jal 1c00809c <test kickoff>

sp,sp,-16

ra,12(sp)

03/03/2021

PULP Simulator and SDK

= § cd tests/hello Jsys/board/chip/<PATH>

= $ make clean all run
runner_args="--
trace=<PATH>:log.txt"

cluster/pe0

cluster/event_unit

= |f <PATH>=.% every trace clusteripcahe
will be dumped in clusterT oo
BUILD/PULP/GCC_RISCV/ dusteritibankx
log.txt file. HUGE! s0c/12

cluster/dma

System Traces — What is it doing?

Description

Processing element, useful to see the
|Os made by the core, and the
instruction it executes. You can

add /iss to just get instruction events

Hardware synchronizer events, useful
for debugging inter-core
synchronization mechanisms

Shared program cache accesses
Shared L1 interconnect

L1 memory banks (the X should be
replaced by the bank number)

L2 memory accesses

DMA events

03/03/2021

PULP Simulator and SDK

Understanding GVSoC System Traces

= 4890000: 489: [/sys/board/chip/soc/cluster/pel/insn] M 1c001252 p.sw 0, 4(a5!) a5=10000010 a5:1000000c PA:1000000c

2,
-

= <timestamp> <cycles> <path> <address> <instruction> <operands> <operands info>

= Where:

= <timestamp> is the timestamp of the event in picoseconds

= <cycles> is the number of cycles

= <path> is the path in the architecture where the event occurred

= <address> is the address of the instruction

= <instruction> is the instruction label

= <operands> is the part of the decoded operands

= <gperands info> is giving details about the operands values and how they are used
* The timestamp is absolute. The cycle count is local to the frequency domain

03/03/2021

PULP Simulator and SDK

Understanding GVSoC System Traces

= 4890000: 489: [/sys/board/chip/soc/cluster/pel/insn] M 1c001252 p.sw 0, 4(a5!) a5=10000010 a5:1000000c PA:1000000c

= <timestamp> <cycles> <path> <address> <instruction> <operands> <operands info>

TIY: > cd tests/hello
> make clean all run runner_args="--trace=insn”

PULP Simulator and SDK

A little bit complex: Vector x Vector

2,
-

= Compute the partial output
results in the core, taking the
input data from L2 memory and
then store them back in L2

PULP Simulator and SDK

Performance counters

tMat();
PRINT MATRIX
rntf(" This 1s the Matrix A
trix(A, N);
tr(" This is the Matrix B
I1x(B, N);
STATS

{

Ten s Select type of
’ performance to measure

Start the counting

read (PI_PERF INSTR);

| d(PT_PERF CYCLES);) Stop and read

Clock Cycles:
[) cycles cnt/instr cnt);

03/03/2021

PULP Simulator and SDK

Performance counters

tHaty).;

PRINT MATRIX
rintr("” This 1s the Mat:
trix(A, N);
tf(" This is the Matnri B
Ix(8, N);

STATS
{

<< P1 PERF CYCLES |
<< PI PERF INSTR

ad (PI_PERF INSTR);
yd(PI PERF CYCLES);

Clock Cycles:

[) cycles cnt/instr cnt);

TIY: > cd tests/perf/matmult

> make clean all run

Application to evaluate

03/03/2021

PULP Simulator and SDK

Performance counters

ypedef enum
PI PERF CYCLES

[rtos/pmsis/pmsis_api/include/pmsis/
e chips/default.h

PI PERF LD STALL
PI_PERF JR STALL
PI_PERF IMISS

PI PERF LD

PI PERF ST

PI PERF JUMP

e oy Real chips have only 1 counter to
be activated at the same time
b while other platforms could have
Rl s e 4 one per event

PI_PERF TCDM CONT

PI PERF ST EXT

03/03/2021

PULP Simulator and SDK

Performance counters

ST s TIY: > cd tests/perf/matmult

pr - > make clean all run VERBOSE_PERF=1

f(
<< P1 PERF CYCLES |
<< PI PERF INSTR

SPOILER: Load stalls are the

problem of the differences between
broikealirati), 8, temc, W Instructions and cycles!

rt read(PI PERF INSTR);
yd(PI PERF CYCLES);

Cloc Lycles: (
(1L) cycles cnt/instr cnt);

03/03/2021

PULP Simulator and SDK

2,
-

A little bit complex: Ram Transfers

= First compute the partial output
results in the core, taking the
input data from L2 memory and
then store them back in L2

= Copy partial output results in
HYPERRAM, going through™

the LIC, uDMA and then
HyperBus

PULP Simulator and SDK

Ram Transfers — Sync or Async

espt, | W),
buff+i*N BYTE, te B

—————— synchronous

wifer 1d4)], | t) N BYTE, 1 task sl lback{&ram write tasks|i prev], end of tx,

*N_BYTE, &tempC[N WORD*buffer id], (uvint £) N_BYTE, tash pack(&rom writ

—————— asynchronous

How can we choose between them?
= |et's see again the performance

TIY: > cd tests/perf/double_buffering
> make clean all run DB=1

03/03/2021

PULP Simulator and SDK

MDMA Messages

Judma/t m] W ock-enable register (current value
fudma/ ém] De ing periph (periph: 1)
udna/ om| (offset: OxB, size: Ox4, is write
| / udna/ £ énl W s (oTTset BxB, size: Bx4, 15 write
3614086176: &7 4o | 34m/sys/board/chip/soc/udna/trace [6m] k-enable register
3614086176: & i | 34m/sys/ /chip/soc/udna/ ce] Acti riph (periph: 7)
3615644496 a7 | [34 ip/soc/udma/trac ém] UDMA acc (offset: Gx608, s
Judsa/trac 1 UDMA
Judna/Lrac UDMA
Judma/trac ém| UDMA
/udma/trace f UDMA
udma/t
fudma/t
ugnma
) /udng/
319851968: 87481: | { 3dm/) /chip/soc/udna/
620027271: 490: | [34m, hip/soc/udma/
d i ¢ E udma/t
8533725: ¢ S | D /soc/udm
20533725 3 6: | 34m/ 3 hip/soc/udna/hyper@
8799636 { | 34m, . ard/chip/soc/udn race UbDMa
fudma/trace UDMA
Judna/hypere ACCes
/udma/] UDMA
fudma/hy
/udma/
Judna/
ontinuous
from 8 (cf

er (req:

the activation of the hyperbus module to the
enqueueing of the first request are passed 382 yDMA
cycles and 7,441 us

03/03/2021

PULP Simulator and SDK

MDMA Messages

(current value
(periph 1)
0xB, size:

ucna/

uana/

= SEEIEEREIEY BUILDIPULPRISCY.
' ;. GCCludma.txt

fudna/

—
<

> cd tests/perf/double_buffering
> make clean all run DB=1 runner_args="--trace=soc/udma:udma.txt”

03/03/2021

PULP Simulator and SDK

VCD Traces — More human readable

= Many more details in the gvsoc documentation
https://qvsoc.readthedocs.io/en/latest/vcd_traces.html#

about the concepts (not updated for all the commands)
= § cd tests/perf/double_buffering
= $ make clean all run runner_args="--vcd”

2,
-

= This command will create a VCD file at
BUILD/PULP/RISCV _GCCl/all.ved and a file at
BUILD/PULP/RISCV_GCC/view.gtkw

= Terminal will print out the command to open the latter with
Gtkwaves

https://gvsoc.readthedocs.io/en/latest/vcd_traces.html

PULP Simulator and SDK

VCD Traces — More human readable

= Many more details in the gvsoc documentation
https://qvsoc.readthedocs.io/en/latest/vcd_traces.html#
about the concepts (not updated for all the commands)

= § cd tests/perf/double_buffering
= $ make clean all run runner_args="--vcd”

2,
-

TIY: > cd tests/perf/double_buffering
> make clean all run DB=1 runner_args=“--vcd”
> gtkwave <INSTALLATION_PATH>/pulp-
sdk/tests/hello/BUILD/PULP/GCC_RISCV/view.gtkw

https://gvsoc.readthedocs.io/en/latest/vcd_traces.html

PULP Simulator and SDK

VCD Traces - uDMA vs. CORE

That duration corresponds (at 50MHz and for 500
transitions) to about 995k cycles

|
While the difference (in cﬁlcles) between both
implementations is 990k (from performance counters)

