

NTX: A 260 Gflop/sW Streaming Accelerator for Oblivious Floating-Point Algorithms in 22nm FD-SOI

Fabian Schuiki¹, Michael Schaffner¹, Luca Benini^{1,2} ETH Zurich¹ and University of Bologna²

Introduction: The Specialization Challenge

- Recent surge of Machine Learning cloud workloads:
 - 3x growth of ML compute workload in 12 months at Facebook [1]
 - Huawei DaVinci Max cloud training platform [2]
 - Compute spent on training doubles every 3.5 months (Intel Nervana NNP-T) [3]
 - Wafer-Scale Deep Learning at Cerebras [4]
 - Gaudi AI training processor by Habana Labs [5]

- Key challenge: Training algorithms change
 - Rise of sparsity in DNNs
 - Rise of novel number formats (e.g. bfloat)
- Avoid overspecialization!
- GPUs are successful because the remain flexible (general purpose):
 - Reduction of von Neumann bottleneck thanks to SIMT
 - Memory latency tolerance thanks to heavy multithreading

[1] "Zion: Facebook Next-Generation Large Memory Training Platform", Facebook, HotChips 2019
 [2] "DaVinci: A Scalable Architecture for Neural Network Computing", Huawei, HotChips 2019
 [3] "Deep Learning Training at Scale", Intel, HotChips 2019
 [4] "Wafer-Scale Deep Learning", Cerebras Systems, HotChips 2019
 [5] Habana Labs, HotChips 2019

EHzürich

Introduction: Target Workload

- Key points for designing new systems:
- Maintain flexibility (fast moving algorithms)
- Extreme energy efficiency
- Our approach: design an architecture for a large class of problems!
- Data-Oblivious Programs
 - Control flow does not depend on data
 - Large number of algorithms fall into this category
 - Prominently includes DNN training
- Enter the Network Training Accelerator

Data-Oblivious Program Examples:

- Reductions and Scans
- ✓ Stencils
- ✓ Linear Algebra
 - ✓ Matrix Multiplication
 - ✓ Tridiagonal Solve
 - Cholesky Factorization
 - LU decomposition (almost oblivious)
- ✓ Deep Learning (Convolution, ReLU)
- ✓ FFT
- ✓ Graph Algorithms
 - ✓ Breadth-first Search
 - ✓ Single-source Shortest Path
 - Connected Components
- Sorting Networks
 - ✓ Bitonic Sort

EHzürich

Introduction: NTX at a Glance

- "Network Training Accelerator"
 - 32 bit float streaming co-processor (IEEE 754 compatible)
 - Custom 300 bit "wide-inside" Fused Multiply-Accumulate
 - 1.7x lower RMSE than conventional FPU
- Manufactured in Globalfoundries 22FDX
 - 1 RISC-V core ("RI5CY") and DMA
 - 8 NTX co-processors
 - 64 kB L1 scratchpad memory (comparable to 48 kB in V100)
- 0.5 mm², 1.25 GHz worst-case, 166 mW, 0.8 V

Key ideas to increase hardware efficiency:

- Reduction of von Neumann bottleneck (load/store elision through streaming)
- Latency hiding through DMA-based double-buffering

Architecture: FMAC

- Main data path is a single-cycle partial carry save FMA
- Expansion of float operands to fixed-point
- Multiplication and addition in fixed-point
 - Single-cycle
 - Tuneable performance by increasing number of partial sums
- Conversion to float after accumulation
 - Partial sums are accumulated
 - Conversion from fixed-point to float
- Heavily pipelined

Architecture: Data Path

Architecture: Address Generation

- 5 nested hardware loop counters
 - 16 bit counter register
 - Configurable number of iterations
 - Once last iteration reached:
 - Reset counter to 0
 - Enable next counter for one cycle
- 3 address generation units
 - 32 bit address register
 - Each has 5 configurable strides, one per loop
 - One stride added to register per cycle
 - Stride corresponds to the highest enabled loop
- Allows for complex address patterns

Architecture: Coprocessor

- Processor configures operation via memory-mapped registers
- Controller issues AGU, HWL, and FPU micro-commands based on configuration
- Reads/writes data via 2 memory ports (2 operand and 1 writeback streams)
- FIFOs help buffer data path and memory latencies

Architecture: Processing Cluster

- I processor core controls 8 NTX coprocessors
- Attached to 128 kB shared **TCOM** via a logarithmic interconnect
- DMA engine used to transfer data (double buffering)
- Multiple clusters connected via interconnect (crossbar/NoC)

Programming: Von Neumann Bottleneck

- NTX helps alleviate the von Neumann bottleneck
 - No explicit load/store instructions
 - No explicit address calculation instructions
- Simple example: Dot product over 1024 elements
- With single RV32IF:
 - 6146 instructions executed
- With single NTX (plus RV32I):
 - 10 instructions executed
 - 1024 idle cycles while NTX executes (can be used)
- NTX reduces instruction bandwidth by >500x
 - Even more when using more nested loops
- NTX amortizes single instruction stream over 8 FPUs
 - Data/Inst. bandwidth ratio of 16 (worst case, usually higher)

Single RV32IF Core:

Setup —	- li	t0, 1024
	flw	ft0, 0(a0)
	flw	ft1, 0(a1)
	fmadd	ft2, ft0, ft1, ft2
Hot Loop	addi	t0, t0, -1
	addi	a0, a0, 4
	addi	a1, a1, 4
l	bgtz	t0, -6
Writeback —	-fsw	ft2, 0(a2)

Single NTX:

Performance: Memory Accesses

- Compared to NVIDIA Volta GPU [1]:
 - Register file in GPU holds registers and threadlocal data
 - Each register read/write is an SRAM access
 - Register and data accesses compete for SRAM

Volta Assembly	NTX Pseudocode
LDS R2, [R0] LDS R3, [R1] FFMA R4, R2, R3, R2	FMAC accu, [AGU0], [AGU1]
2 mem. acc. ("[]") 8 reg. acc.	2 mem. acc. ("[…]") 0 reg. acc. (+ addr. calc for free)
= 10 SRAM hits total	= 2 SRAM hits total

 Our latency hiding technique is not more expensive than in GPUs

1 Volta SM	8 NTX cl.
64 FPUs	64 FPUs
256 kB RF 128 kB L0 Cache	512 kB TCDM
32-2048 threads	8 threads

[1] Volta Architecture Whitepaper, NVIDIA

C++ API Example

Tiled convolution:

```
for (int tk = 0; tk < TK; ++tk)
                                                     ntx api ntx;
                                                                                                Configure loop bounds
for (int tn = 0; tn < TN; ++tn)
                                                     dma api dma;
                                                                                                once for the entire
                                                     ntx.cfg_loops(5, {N,M,D,U,V}, ...);
                                                                                                kernel
for (int tm = 0; tm < TM; ++tm) {</pre>
                                                     for (int tk = 0; tk < TK; ++tk)
  load tile(x, w, b);
                                                                                                Start reading input data
  for (int k = 0; k < K; ++k)
                                                     for (int tn = 0; tn < TN; ++tn)
                                                     for (int tm = 0; tm < TM; ++tm)</pre>
 for (int n = 0; n < N; ++n)
                                                                                                Point NTX at the
                                                       dma.start read(x, w, b);
  for (int m = 0; m < M; ++m) {</pre>
                                                                                                address of the input
                                                       for (int k = 0; k < K; ++k) {
    float a = b[k];
                                                                                                data
    for (int d = 0; d < D; ++d)
                                                          ntx.cfg_ptrs(x, &w[k], &y[k]);
                                                                                                Wait for the input data
    for (int u = 0; u < U; ++u)
                                                          dma.wait read(); +----
                                                                                                to be loaded (overlaps
    for (int v = 0; v < V; ++v) {
                                                        ntx.issue cmd(ntx api::MAC);
                                                                                                with previous NTX
      a += x[d][n+u][m+v] * w[k][d][u][v];
                                                                                                computation)
                                                       ntx.wait_ready(); 
                                                                                                Start next computation
                                                        dma.start_write(y);
    y[k][n][m] = a;
                                                        swap_buffers();
                                                                                     Wait for computation to complete
  store tile(y);
                                                                                     Start writing back output data
```

Tiled convolution with NTX:

Results: Roofline

- Alleviates von Neumann bottleneck:
 - No explicit loads, stores, address calculation
- DMA transfers data in background
- NTX independent over >100000 cycles
- Strong >85% utilization of DMA and FPU
- Effectively issues 32 flops, 20 mem. acc. per cycle (16 local & 4 global, 32 bit)
- Covers wide range of oblivious kernels:
 - Linear Algebra: e.g AXPY, GEMV, GEMM
 - Stencils: e.g. Diffusion, Discrete Laplace in 1D/2D/3D
 - Machine Learning: e.g. Convolution, ReLU, FC

Very close to roofline on compute-

ETH zürich

Results: Manufactured Chip in 22FDX

see asic.ethz.ch

Integrated Systems Laboratory, ETH Zurich

EHzürich

Results: Silicon Measurements

- Key benefit: >30% of area is FPU
- Yields high area efficiency:
 - 47 Gflop/s·mm²
- High efficiency mode at 0.425 V:
 - 260 Gflop/sW, 1.5 Gflop/s
- High performance mode at 1.0V:
 - 24 Gflop/s, 70 Gflop/sW
- Wide range of operating voltage:
 - Logic: 0.425 V to 1.0 V and above
 - SRAMs: 0.55 V to 1.0V and above
- Dynamically set operating point for workload
 - Almost linear trade-off between perf./efficiency
 - Compensate for PVT variation via body-bias
 - Performance boost up to 1.6x

Performance and efficiency measured on manufactured silicon:

Results: Comparison with Other Work

- NTX is highly competitive with SoA
- Compared to equivalent SM in Volta V100 (our estimates):
 - 2.1x energy efficiency gain
 - 2.3x area efficiency gain (node-compensated)
- Compared to PULP cluster, ARM Cortex A53, and a 64 bit Rocket core:
 - 6.7x to 15.6x energy efficiency gain
 - 3.2x to 6.4x area efficiency gain
- Compared to a 28-core dual-AVX-512 Intel Xeon 8180 CPU:
 - 11.9x energy efficiency gain
 - 13.2x area efficiency gain

ETHzürich

Future Work

- Address Generator Extension
 - NTX's address generator applicable to more kernels
 - FFTs, linear algebra decompositions/factorizations
 - Searches? Sorting? Graphs?
- Bring streaming to RISC-V cores
- Transprecision Computing
 - Reduced-precision training is around the corner [1]
 - Save precious DRAM bandwidth
 - Custom number formats
 - Use float8, float16
 - Logarithmic numbers?
 - On-the-fly data type conversion in DMA
- Automated Mapping of Kernels
 - Starting from Compute Graph, e.g. TensorFlow

[1] Coleman, Cody, et al. "Analysis of dawnbench, a time-to-accuracy machine learning performance benchmark." ACM SIGOPS Operating Systems Review 53.1 (2019): 14-25.

Thanks!

Questions?