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Introduction Results and SoA Comparison

Event-driven paradigm: improve sensing and computing efficiency

by only processing events describing relevant changes in the input: We evaluate ColibriES’s efficiency on the application of 11-class

gesture recognition from DVS data with a 7-layer spiking CNN
(SCNN), using the DVS128 dataset from [2]. We evaluate the latency
and energy consumption of the end-to-end pipeline of data
acquisition, SNN inference on SNE and actuation of a PWM output.

Efficiency Benefit Technology

Sensing Avoid redundant data Dynamic Vision Sensors
collection & transmission (DVS/Event Cameras)

Computing  Avoid processing of Neuromorphic Computing: Work/Platform  [3]/Intel Loihi [4)/IBM TrueNorth Ours/ColibriES
Irrelevant data Spiking Neural Networks (SNNSs) Network 5-layer SCNN  16-layer SCNN 7-Layer SCNN
Existing platforms fail to harness the potential of event-driven o — 90 5% 86.506-94. 6% 830/,

processing for ultra-low-power edge applications due to overheads
in communication and the lack of an efficient and versatile host End-to-End? X v v
platform. ColibriES closes this gap, bringing end-to-end efficiency Pyrocidgte MW)  29.2 68.8-134.4 17.7

INn neuromorphic and conventional algorithms to the edge.
Pyroc,ing (MW) N/A 88.5-178.8 35.6

ColibriES: Enabling End-to-End Efficiency In Eprocing N/A 28.8 7.7
Neuromorphic & Conventional Applications
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ColibriES unites event-based neuromorphic, DNN-based and €Nnergy than TrueNorth - :
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general-purpose computing in an ultra-efficient edge system. ¢
End-to-end efficiency Is achieved through integration of sensor .

Interfaces with efficient heterogeneous processing and extensive PIEprocessing o0
communication and control capabilities in the Kraken RISC-V SoC ¢ Jltrajeff_lment data .
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(see below). The ColibriES evaluation PCB connects Kraken to the acquisition with native DVS . : .
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outside world:
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With ColibriES, we have presented a fully embedded, low-power
heterogeneous edge computing system. ColibriES:
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» Offers a wide range of peripherals, including for DVS cameras

- - f and RGB cameras, enabling novel low-power sensor fusion
Event Camera Configurable PSUs | Arduino Headers approaches
(DVS) Interface for run-time DVFS for flexible extensibility

* Unites ultra-efficient accelerators in one versatile platform:

-  SNE for SNN inference
Kraken: The RISC-V SoC at the Heart of ColibriES . CUTIE for ternary neural networks

. .  8-core PULP Cluster for arbitrary compute tasks
Kraken is a multi-core RISC-V based SoC from the PULP (Parallel

Ultra Low Power) family. It offers the following features: * Achieves SoA efficiency on end-to-end DVS-based gesture

recognition (IBM DVS-Gesture dataset):

* Rich peripheral set, including DVS and RGB camera interfaces |
 DVS-to-label energy consumption of 7.7 mJ

« Power management: power gating of unused blocks |
 SNN inference energy of 1.4 mJ on SNE

« Ultra-efficient processing units for multi-paradigm computing:

- 35 mW average inference power

Processing Unit Algorithms

Event-Driven SNE [1] Spiking Neural Networks
Frame-Based CUTIE [2] Ternary Neural Networks References & Links

General-Purpose 8-Core PULP Cluster  Arbitrary

1. A. Di Mauro et al.: “SNE: An Energy-Proportional Digital Accelerator for Sparse Event-Based Convolutions”,
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Max. Freq. 330 MHz E : EE S FPU § Eg
Cluster Eff. 300 GOp/s/W - 55 S gU 3. R. Massa et al.: “An Efficient Spiking Neural Network for Recognizing Gestures with a DVS Camera on the
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System Power 200 mW-300 mW : o t | 4. A. Amir et al.: “A Low Power, Fully Event-Based Gesture Recognition System”, CVPR 2017

Padframe Fabric Controller (FC) ~ ~ Accelerator

Kraken Key Figures of Merit D|e Mlcrograph of Kraken Block Diagram of Kraken’s architecture
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