' B PULP PLATFORM

Open Source Hardware, the way it should be!

Efficient Systolic Execution on a Shared-Memory
Manycore System

Samuel Riedel (sriedel@iis.ee.ethz.ch)
Matheus Cavalcante (matheus@iis.ee.ethz.ch)
Sergio Mazzola (smazzola@iis.ee.ethz.ch)
Luca Benini (Ibenini@iis.ee.ethz.ch)

'Q} http://pulp-platform.org , @pulp_platform u https://lwww.youtube.com/pulp_platform

2,
-

Systolic Architectures

= Network of tightly coupled processing untis u

IPU IPU

¢ Core 2 Core 1

= Widely used for dedicated accelerators e

Core 4 Core 3

= Google’s TPU and PVC o RS

Core6 | Core5
+ Highly efficient specific workloads
Source: https://blog.google/products/pixel/pixel-visual-
- MaCh | n e |ea rn | ng & | mag e p rOCeSSI ng core-image-processing-and-machine-learning-pixel-2/

L IPU

- Very rigid execution scheme
= Not all algorithms map nicely to the same topology

Source: https://cloud.google.com/tpu

18.06.2022

R4

Shared-memory Manycore Systems

+ General-purpose processing
= \ery flexible execution scheme Memory

= Easy to program]

Interconnect
+ Widely used in CPUs, GPUs,
accelerators

- Trade off throughput

= Communication overhead

18.06.2022

2,
-

Combine the Best of Both Worlds

Systolic Hybrid Shared-memory
Array Architecture System

High performance High flexibility

= Efficient systolic execution on a shared-memory system
» Extend a shared-memory manycore system with a systolic operation mode
= Get performance of a systolic array for suitable workloads
= Keep the flexibility of a shared-memory system

18.06.2022

2,
-

Our Approach

» Emulate systolic behavior through software
= Allows exploring systolic topologies

= Explore hybrid programming model
= Merge systolic and classical programming to boost performance

= Add lightweight hardware extensions
= Reduce communication overhead through a custom ISA extension
= Completely hide communication with an autonomous data mover

Software Data
emulation mover

18.06.2022

2,
-

MemPool

= Scaled-up shared-L1 manycore system

= 256 32-bit RISC-V cores
= 1 MiB of shared L1 data memory in 1024 banks
= < 5 cycles latency (without contention)

Memory (1MiB)

= Full erXIbIIIty Interconnect
= |ndividually programmable cores

= Open source
= https://github.com/pulp-platform/mempool

18.06.2022

R4

Emulate Systolic execution

PE[{PE[=
v 1
PE[{PE[=
T
b

PE[==
et
PE[—~{PE[=

4

PE

PE

g

t

i

PE

H

1

ty

I E Switch

t

it
PE

Systolic
Array

|

Hybrid
Architecture

Shared-memory
System

18.06.2022

Software
emulation

18.06.2022

Emulate Systolic in Software
= Emulate all communication queues in software

= Explore systolic topologies
= Arbitrary number of queues
= Arbitrary interconnect topology

1=0; i<N; i++) {
queue_pop(ga_in);
queue_pop(gb_in);
C += a * b;
queue_push(a, ga_out);
queue_push(b, gb_out);

C
fo

1 ~o

r
a
b

}

18.06.2022

Matrix Multiplication
= Systolic 2D grid

» Feed inputs from left and top
= Qutputs are stationary

= MemPool’s 256 cores form a

16x16 grid
= Two pushes and pops per MAC

= Can we better utilize the cores?

18.06.2022

Matrix Multiplication

= Utilize programmable cores
= Reuse data in register file
= Allows for 32x32 tiles = more computation

= 8§ MACs for the same number of push and e i ;
pop operations ' ’

dpq dgo
dqq aq

dyq A I
31 30 W

= 5x faster than baseline topology Bk

= Hybrid approach allows exploring topologies o
23 Y22
ds33 A3

18.06.2022

2D Convolution
= Different topology

= One long chain of PEs
computing on input rows

= Maximize input reuse

= Weights can be stationary or
streamed in

= Qur hybrid approach
allows for flexible
topologies

18.06.2022

Emulate Systolic in Software

= Software emulation gives us flexibility

= At the cost of performance
= Software queue push and pop take tens to hundreds of cycles

1=0; i<N; i++) {
queue_pop(ga_in);
queue_pop(gb_in);
C +=a * b;
queue_push(a, ga_out);
queue_push(b, gb_out);

C
fo

1 ~o

r
a
b

}

18.06.2022

18.06.2022

ISA Extension: Xqueue pop and push

= Reduce queue accesstoa = Similar implementation to

single instructions atomics
= Keep the benefits of queues in the = Extension in core and memory controller
memory
c = 0; c = 0;
for (i=0; 1i<N;/i++) { for (i=0; i<N;¥wi++) {
a = queue_pop(ga_in); a = __builtin_pop(ga_in);
b = queue_pop(gb_in); b = __builtin_pop(gb_in);
C += a * b; C += a * b;
queue_push(a, ga_out); __builtin_push(a, qa_out);
queue_push(b, gb_out); __builtin_push(b, gb_out);

} }

18.06.2022

Xqueue pop and push hardware

Memory Controller

Queue pop/push AMO?

Head —>
Tail

A
req > req
—>
—>
—>» —>
Cores A >ALU Memory
—>

rsp rsp

Y

18.06.2022

Queue pop and push in hardware

= Fully parametrizable

= Number of queues per bank

= Queue size

= One queue per bank is enough

= 4 queues per core in MemPool ’

\ A 4 >
AP 8
g

MMMMM

18.06.2022

Area Cost Breakdown

m Module Category Total Area’ [KGE] | Percent[%)]

700
Memory controller
600
Baseline Remainder 657.9 94.1
500
Total Tile 699.2 100.0 _
M
O
Memory controller 51.3 7.2 % 00
(]
Xqueues = Remainder 658.0 92.8 < 300
Total Tile 709.3 100.0 200
'post-synthesis area in 22FDX at worst-case corner (0.72 V, 125°C) targeting 500 MHz 100
. . . 0
9 Mlnlmal hardware |mpaCt Baseline Xqueue

B Remainder ®Memory Controler

18.06.2022

2,
-

Performance Evaluation
= Shared-memory vs systolic

(o]
o

= Double the performance on 2D
convolution

(0]
o

~
o

(o]
o

= Baseline matmul is still faster
= Limited by explicit queue operations

Throughput (MACs/cycle)
B (a)
o o

w
o

= How can we do even better?
= Eliminate explicit communication

N
o

=
o

o

2D convolution matrix multiplication

m Baseline m Systolic Xqueues

18.06.2022

18.06.2022

Automatically push and pop

= Eliminate the explicit = Core focuses on computation

push/pop instructions = Extension to core

= Stream-like behavior
= Do communication in parallel

c = 0; c = 0; c = Q:

for (i=0; i<N; i++) { for (i=0; 1i<N; i++) { setyp_stream(a, qa);
a = queue_pop(ga_in); a = __builtinfpep(ga_in); setup_stream(b, gb);
b = queue_pop(gb_in); b = __builtix_pop(gb_in); for (i=0; 1i<N; i++) {
C += a * b; C += a * by C += a * b;
queue_push(a, ga_out); __builtinipush(a, qa_out); }
queue_push(b, gb_out); __builtin_push(b, gb_out);

18.06.2022

SSR extension

= ‘Data Mover’ can be ——— menfory borts
configured to read/write Core T 1. e e
data streams | il —y
= Registers are refilled automatically = _{]_/ o \D_’
= Data mover performs queue 2| 47 ‘D_. g @
pop/push 18 I-{]L 4
= Could increase memory ports :D I I

= Future work

18.06.2022

Conclusion

= Hybrid systolic shared-memory system

= Efficiently execute systolic workloads on a shared-memory system
= Keep the flexibility of the shared-memory system

= Explore systolic topologies
= Mix systolic and shared-memory programming

= [SA extension: Xqueue
= 2x speedup for 1% hardware overhead

= Future optimization with autonomous data mover
= Potentially double the performance

18.06.2022

MemPool’s Hierarchy

» Tile: « Group: e Cluster
— 4 32-bit cores — 64 cores — 256 cores
— 16 banks — 256 banks — 1 MiB of memory (1024
— Single cycle memory access — 3cycles latency banks)

— 5 cycles of latency

4Tile32 4 Tile33 = 4 Tied? .Tileds -
Noth | [Mortheast |iIN o

| % l'l T;Ie
Ao |-
| i DUp DUD
B [
‘ i o / ac A8
| !

Mle1s
U

e i Tile17
Intercannect el Tile2 [Tile6
DUD U OULp

MemPool Tile Group Cluster

| v~

I

Tile 11

L7 Data Cache e

1

[0 cacha] [[0 eache] [0 e [0 eache]

ETHzurich

12.09.2022

