

Robust and Efficient Depth-based Obstacle Avoidance for Autonomous Miniaturized UAVs

Hanna Müller, Vlad Niculescu, Tommaso Polonelli, Michele Magno, Luca Benini

Dept. of Information Technology and Electrical Engineering, ETH Zürich, Switzerland

Challenges in Nano-UAVs

Power constraint

- ~1 W for sensing/processing Weight constraint
 - Crazyflie: **27** g + < 15 g payload
 - Limited computational power
 - ARM Cortex-M4 168 MHz
 - **192 kB** SRAM

Depth-based obstacle avoidance Direct depth map Low resolution No dataset required

Image-based obstacle avoidance High number of pixels High computational load Large dataset

Greyscale Depth camera map

Depth-based Obstacle Avoidance

STM VL53L5CX

Actuation

Onboard

intelligence

Autonomous

navigation

- 900nm laser-based
- Time-of-flight multizone

PID

Perception

MUITIZON

- 15 Hz @ 8x8 pixel
- 65° diagonal FoV
- Up to 4 m range
- Modular integration on 2.2 g deck

Multizone ToF zones 01234567 Left Right Ceiling Danger Caution Ground

45°

OA decision tree

Decision tree for obstacle avoidance

- Low latency (210 us)
- Low computational requirements
- Not relying on training data

Results

- Power consumption
 - 600 mW for

sensing - computation

- < 10% added in total
- Field tests
 - **100%** success in controlled environments
 - **100%** success **@0.5 m/s** in general office environment

87.9%	o (9.32W)	Motors (without ToF)
6.4%	(0.68W)	Motors (additionally with ToF)
3.0%	(0.32W)	Electronics (only ToF)
2.6%	(0.28W)	Electronics (without ToF)

	Environment	Max. vel.	Flight time	Flight distance	#flights with crash
Maze		1m/s	6'31" 6'34" 6'45"	199m 209m 212m	0/3
Onice			average over 20 flights	average over 20 flights	
		0.5m/s	7'23"	79m	0/20
		1m/s	6'06''	98m	4/20
	AZE	1.5m/s	3'37''	73m	12/20
		2m/s	1'45"	47m	18/20

Robust, Efficient and Open-Source!!!

Robust obstacle avoidance

100% success with 0.5 m/s in a general office environment

Efficient onboard implementation

> 0.31% of available computational power (ARM Cortex-M4)

Lightweight and low-power

> <10% power consumption added (lift weight and drive) electronics)

Open-source

- > Hardware
- > Firmware
- > Dataset
 - internal state, motion capture
 - ToF, camera

demo video