
2Integrated Systems Laboratory

1Department of Electrical, Electronic
and Information Engineering

RISC-V Tutorial

HiPEAC 2019, Valencia 21.01.2019

Frank K. Gürkaynak, Michael Schaffner,

Fabian Schuiki, Andreas Kurth

http://pulp-platform.org

§ We are from ETH Zürich in Switzerland
§ … and part of the PULP team

§ http://pulp-platform.org

A word from your sponsors
§ Eurolab4HPC (800962)

§ with the commitment to make Europe excel in
academic research and innovation in HPC technology

§ https://www.eurolab4hpc.eu/
§ OPRECOMP (732631)

§ aims to build an innovative, reliable foundation for
computing based on transprecision analytics

§ http://oprecomp.eu/

Welcome to the RISC-V Tutorial @ HiPEAC

http://pulp-platform.org/
https://www.eurolab4hpc.eu/
http://oprecomp.eu/

§ 10:00 – 11:00 Frank K. Gürkaynak – Introduction
§ 11:00 – 11:30 Coffee Break

§ 11:30 – 12:00 Andreas Kurth – Software Development Kit
§ 12:00 – 13:00 Fabian Schuiki – PULP and CAPI (Hands on demo)

§ 13:00 – 14:00 Lunch

§ 14:00 – 15:00 Andreas Kurth – Hero (live demo)
§ 15:00 – 15:30 Michael Schaffner – Ariane + Open Piton (intro)

§ 15:30 – 16:00 Break

§ 16:00 – 16:30 Michael Schaffner – Ariane + Open Piton (live demo)
§ 16:30 – 17:30 Q&A, demos

What’s on the menu

§ RISC-V describes an open ISA
§ Implementations of RISC-V can be both open and closed source
§ There are many implementation options (32/64, FP, Vector, Atomics..)
§ Implementations can be in different languages (Chisel/VHDL/Verilog)…
§ … and target different platforms (FPGA/ASIC)

§ The PULP team (ETH Zürich and University of Bologna)
§ Are founding members of the RISC-V foundation
§ Develop optimized implementations of RISC-V cores in SystemVerilog
§ Provide the cores using a permissive open source license on GitHub

§ The core alone does not do much, it needs a system to work
§ PULP project provides several open source platforms built on RISC-V cores
§ ... and a number of open source peripherals to build these systems

RISC-V is ‘just’ the processor core, it works in a system!

Platforms

InterconnectPeripheralsRISC-V Cores

The PULP family explained

Accelerators

RISC-V Cores

We have developed several optimized RISC-V cores

RI5CY

32b

Micro
riscy
32b

Zero
riscy
32b

Ariane

64b

Accelerators

InterconnectPeripheralsRISC-V Cores

Only processing cores are not enough, we need more

RI5CY

32b

Micro
riscy
32b

Zero
riscy
32b

Ariane

64b
AXI4 – InterconnectDMA GPIO

APB – Peripheral BusI2SUART

Logarithmic interconnectSPIJTAG

Neurostream
(ML)

HWCrypt
(crypto)

PULPO
(1st order opt)

HWCE
(convolution)

Platforms

Accelerators

InterconnectPeripheralsRISC-V Cores

All these components are combined into platforms

RI5CY

32b

Micro
riscy
32b

Zero
riscy
32b

Ariane

64b
AXI4 – InterconnectDMA GPIO

APB – Peripheral BusI2SUART

Logarithmic interconnectSPIJTAG

M

I

O
cluster

interconnect

A R5R5R5

M MMM
in

te
rc

on
ne

ct

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

A R5R5R5

M MMMM

I

O in
te

rc
on

ne
ct

Neurostream
(ML)

HWCrypt
(crypto)

PULPO
(1st order opt)

HWCE
(convolution)

R5

MI

O

in
te

rc
on

ne
ct

A

Single Core
• PULPino
• PULPissimo

Multi-core
• Fulmine
• Mr. Wolf

Multi-cluster
• Hero

IOT HPC

R5
R5

§ Power PULP (Fabian Schuiki)
§ Developed as part of H2020 project OPRECOMP
§ Allows clusters of RISC-V cores to be connected to a Power8 system over CAPI

§ HERO (Andreas Kurth)
§ Open Heterogeneous Research Platform
§ Connects a PULP based cluster on FPGA with an ARM core running Linux

§ Ariane + OpenPiton (Michael Schaffner)
§ Ariane is our 64bit RISC-V processor
§ OpenPiton was developed by Princeton Parallel Group (using Sparc Cores)
§ The recent release of OpenPiton (and Ariane) allow them to work together

Everything we talk about today is available as open source

Today we will discuss three HPC applications of PULP

§ To get applications running we need quite a bit of help
§ Cross compilation, sometimes for multiple platforms (RISC-V, ARM..)
§ Download the design
§ Run and collect the output

§ The PULP SDK has been developed to help in this regard
§ Andreas will talk more about this after the break

§ The SDK allows a common interface to run your applications on:
§ a virtual platform running on your own system (Power PULP, Hands on)
§ an RTL simulator (Ariane + OpenPiton, Live demo)
§ an FPGA implementation target (Hero, Live demo)
§ the actual ASIC that contains your design (demonstrations at the end of session)

One SDK, many ways to work with PULP based systems

§ Project started in 2013 by Luca Benini
§ A collaboration between University of Bologna and ETH Zürich

§ Large team. In total we are about 60 people, not all are working on PULP
§ Key goal is

§ We were able to start with a clean slate, no need to remain compatible
to legacy systems.

Parallel Ultra Low Power (PULP)

How to get the most BANG
for the ENERGY consumed
in a computing system

§ Our research was not developing processors…
§ … but we needed good processors for systems we build for research
§ Initially (2013) our options were

§ Build our own (support for SW and tools)
§ Use a commercial processor (licensing, collaboration issues)
§ Use what is openly available (OpenRISC,..)

§ We started with OpenRISC
§ First chips until mid-2016 were all using OpenRISC cores
§ We spent time improving the microarchitecture

§ Moved to RISC-V later
§ Larger community, more momentum
§ Transition was relatively simple (new decoder)

How we started with open source processors

§ Started by UC-Berkeley in 2010
§ Open Standard governed by RISC-V

foundation
§ ETHZ is a founding member of the

foundation
§ Necessary for the continuity
§ Extensions are still being developed

§ Defines 32, 64 and 128 bit ISA
§ No implementation, just the ISA
§ Different RISC-V implementations (both

open and close source) are available

§ At IIS we specialize in efficient
implementations of RISC-V cores

Spec separated into “extensions”

RISC-V Instruction Set Architecture

I Integer instructions

E Reduced number of registers

M Multiplication and Division

A Atomic instructions

F Single-Precision Floating-Point

D Double-Precision Floating-Point

C Compressed Instructions

X Non Standard Extensions

§ No or partial work done yet on those
extensions

§ Possible to contribute as a foundation
member in task-groups

§ Dedicated task-groups
§ Formal specification
§ Memory Model
§ Marketing
§ External Debug Specification

§ For Bit-manipulation we provide our
own solution → part of the task group

Extensions still being worked on by RISC-V foundation

Q Quad-Precision Floating-Point

L Decimal Floating-Point
(IEEE 754-2008)

B Bit-Manipulation

T Transactional Memory

P Packed-SIMD

J Dynamically Translated Languages

V Vector Operations

N User-Level Interrupts

Our RISC-V family explained

§ Zero-riscy
§ RV32-ICM

§ Micro-riscy
§ RV32-CE

§ Ariane
§ RV64-

IMAFDCX
§ Full privilege

specification

§ RI5CY
§ RV32-ICMX
§ SIMD
§ HW loops
§ Bit

manipulation
§ Fixed point

§ RI5CY+FPU
§ RV32-ICMFX

Low Cost
Core

Linux capable
Core

Core with DSP
enhancements

Floating-point
capable Core

32 bit 64 bit

ARM Cortex-M0+ ARM Cortex-M4 ARM Cortex-A55ARM Cortex-M4F

§ 4-stage pipeline, optimized for energy efficiency
§ 40 kGE, 30 logic levels, Coremark/MHZ 3.19
§ Includes various extensions (X) to RISC-V for DSP applications

RI5CY – Our workhorse 32-bit core

RI5CY – ISA Extensions improve performance

for (i = 0; i < 100; i++)
d[i] = a[i] + b[i];

mv x5, 0
mv x4, 100
Lstart:

lb x2, 0(x10)
lb x3, 0(x11)
addi x10,x10, 1
addi x11,x11, 1
add x2, x3, x2
sb x2, 0(x12)
addi x4, x4, -1
addi x12,x12, 1

bne x4, x5, Lstart

Baseline

11 cycles/output

mv x5, 0
mv x4, 100
Lstart:

lb x2, 0(x10!)
lb x3, 0(x11!)
addi x4, x4, -1
add x2, x3, x2
sb x2, 0(x12!)

bne x4, x5, Lstart

8 cycles/output

Auto-incr load/store

lp.setupi 100, Lend
lb x2, 0(x10!)
lb x3, 0(x11!)
add x2, x3, x2

Lend: sb x2, 0(x12!)

HW Loop

5 cycles/output

lp.setupi 25, Lend
lw x2, 0(x10!)
lw x3, 0(x11!)
pv.add.b x2, x3, x2

Lend: sw x2, 0(x12!)

Packed-SIMD

1,25 cycles/output

§ The ‘X’ extension can be used by everyone freely
§ Offers great flexibility
§ Of course these custom extensions are not automatically supported by tools
§ You have to add patches / new tools so that these can be utilized

§ Even if your tools do not support extensions, the cores will work
§ The tools will just not generate code that takes advantage of the extensions
§ But the cores with extensions will remain compatible to standard RISC-V

§ The goal is to work so that ‘good’ extensions become standard
§ Requires being active in the RISC-V foundation task groups
§ ETH Zürich is actively involved in V, P and B at the moment

It is possible to enhance RISC-V with custom extensions

RISC-V: “To support development of proprietary custom extensions, portions of the encoding
space are guaranteed to never be used by standard extensions.”

For 8-bit values the following can be executed in a single cycle (pv.dotup.b)
Z = D1 × K1 + D2 × K2 + D3 × K3 + D4 × K4

Our extensions to RI5CY (with additions to GCC)

§ Post–incrementing load/store instructions
§ Hardware Loops (lp.start, lp.end, lp.count)
§ ALU instructions

§ Bit manipulation (count, set, clear, leading bit detection)
§ Fused operations: (add/sub-shift)
§ Immediate branch instructions

§ Multiply Accumulate (32x32 bit and 16x16 bit)
§ SIMD instructions (2x16 bit or 4x8 bit) with scalar replication option

§ add, min/max, dotproduct, shuffle, pack (copy), vector comparison

Unified FP/Integer register file
§ Not standard
§ up to 15 % better performance

§ Re-use integer load/stores (post
incrementing ld/st)

§ Less area overhead
§ Useful if pressure on register file is not

very high (true for a lot of applications)

21

What About Floating Point Support?

§ F (single precision) and
D (double precision) extension in RISC-V

§ Uses separate floating point register file
§ specialized float loads (also compressed)
§ float moves from/to integer register file

§ Fully IEEE compliant
§ RI5CY support for F
§ Ariane for F and D

§ Pipelined for Fused Multiply Add (FMA):
§ FMA 64: 4 stages
§ FMA 32: 3 stages
§ FMA 16: 2 stages
§ Iterative for divisions and square roots

Alternative FP format support

Physical Memory Protection (PMP)

§ Protect the physical memory when the
core runs in U or S privilege level

§ Up to 16 entries for address filtering
§ Configuration held in 4 CSRs

pmpcfg[0-3]
§ Whether Store (W), Load (R) and Fetch

(X) is allowed
§ Address matching modes:

§ Naturally aligned power-of-2 regions
(NAPOT) or aligned 4 Byte (NA4)

§ Boundaries >, < (TOR)
§ Implemented in RI5CY

Supervisor Memory Translation and
Protection (for Linux-like systems)

§ Effectively needs TLBs
§ Register to configure base page

number (satp)
§ Translation Mode

(32, 39, 48 virtual addressing)
§ Address Space Identifier (ASID)
§ Implemented in Ariane

Memory Protection (PMU and MMU)

MMU
TLB HIT

TLB MISS PTW

§ RI5CY was built for energy efficiency for DSP applications
§ Ideally all parts of the core are running all the time doing something useful
§ This does not always mean it is low-power
§ The core is rather large (> 40 kGE without FPU)

§ People asked us about a simple and small core
§ Not all processor cores are used for DSP applications
§ The DSP extensions are mostly idle for control applications
§ Zero-Riscy was designed to as a simple and efficient core.

§ Some people wanted the smallest possible RISC-V core
§ It is possible to further reduce area by using 16 registers instead of 32 (E)
§ Also the multiplier can be removed saving a bit more
§ Micro-Riscy is a parametrized variation of Zero-Riscy with minimal area

Why we designed other 32-bit cores after RI5CY?

§ Only 2-stage pipeline, simplified register file
§ Zero-Riscy (RV32-ICM), 19kGE, 2.44 Coremark/MHz
§ Micro-Riscy (RV32-EC), 12kGE, 0.91 Coremark/MHz
§ Used as SoC level controller in newer PULP systems

Zero/Micro-riscy, small area core for control applications

Different 32-bit cores with different area requirements

RI5CY Zero-riscy Micro-riscy

Different cores for different types of workload

RI5C
Y fo

r D
SP

Zero
-ris

cy
good

tra
de-o

ff

Micr
o-ris

cy
for

co
ntro

l

Normalized Static Power Consumption Dynamic Power Consumption

§ For the first 4 years of the PULP project we used only 32bit cores
§ Luca once famously said “We will never build a 64bit core”.
§ Most IoT applications work well with 32bit cores.
§ A typical 64bit core is much more than 2x the size of a 32bit core.

§ But times change:
§ Using a 64bit Linux capable core allows you to share the same address space as

main stream processors.
§ We are involved in several projects where we (are planning to) use this capability

§ There is a lot of interest in the security community for working on a contemporary
open source 64bit core.

§ Open research questions on how to build systems with multiple cores.

Finally the step into 64-bit cores

ARIANE: Our Linux Capable 64-bit core

§ Tuned for high frequency, 6 stage pipeline, integrated cache
§ In order issue, out-of-order write-back, in-order-commit
§ Supports privilege spec 1.11, M, S and U modes
§ Hardware Page Table Walker

§ Implemented in GF22nm (Poseidon), and UMC65 (Scarabaeus)
§ In 22nm: 910 MHz worst case conditions

(SSG, 125/-40C, 0.72V)
§ 8-way 32kByte Data cache and

4-way 32kByte Instruction Cache
§ Core area: 175 kGE

Main properties of Ariane

7%
8% 3%

21%

44%

9%

8%Area
PC Gen
IF
ID
Issue
Ex
Reg File
CSR

Ariane mapped to FPGA boots Linux

Digilent Genesys 2
§ Core: 50 MHz
§ Core: 50 kLUTs (20%)
§ 1 GiB DDR3

30

Xilinx VCU 118
§ Core: 100 MHz
§ Core: 50 kLUTs (3%)
§ 32 GiB DDR4
§ PCIe Interface

Ariane booting Linux on a Digilent Genesys 2 board

Platforms

Accelerators

InterconnectPeripheralsRISC-V Cores

The pulp-platforms put everything together

RI5CY

32b

Micro
riscy
32b

Zero
riscy
32b

Ariane

64b
AXI4 – InterconnectDMA GPIO

APB – Peripheral BusI2SUART

Logarithmic interconnectSPIJTAG

Neurostream
(ML)

HWCrypt
(crypto)

PULPO
(1st order opt)

HWCE
(convolution)

R5

MI

O

in
te
rc
on
ne
ct

A

Single Core
• PULPino
• PULPissimo

§ Simple design
§ Meant as a quick release

§ Separate Data and
Instruction memory
§ Makes it easy in HW
§ Not meant as a Harvard arch.

§ Can be configured to work
with all our 32bit cores
§ RI5CY, Zero/Micro-Riscy

§ Peripherals copied from
its larger brothers
§ Any AXI and APB peripherals

could be used

PULPino our first single core platform

PULPino
Data
Mem

RISC-V
core

Inst
Mem

I$

A
PB

-in
te

rc
on

ne
ct

GPIO

A
XI

 -
in

te
rc

on
ne

ct

Bus
Adapt

SPI M

UART

I2C

UART

SPI S

Boot
ROM

§ Shared memory
§ Unified Data/Instruction Memory
§ Uses the multi-core infrastructure

§ Support for Accelerators
§ Direct shared memory access
§ Programmed through APB bus
§ Number of TCDM access ports

determines max. throughput
§ uDMA for I/O subsystem

§ Can copy data directly from I/O to
memory without involving the core

§ Used as a fabric controller
in larger PULP systems

PULPissimo the improved single core platform

RI5CY
Ibuf
/ I$

instr data

Event Unit

Tightly Coupled Data Memory Interconnect

Mem
Bank

Mem
Bank

Mem
Bank

Mem
Bank

Mem
Bank

Mem
Bank

uDMA

APB / Peripheral Interconnect

Clock / Reset
Generator

Debug
Unit

FLLs

I/O
intfs

UART
SPI
I2S
I2C

SDIO
CPI

JTAG

Hardware
Accelerator Ext

Coreplex

§ Still work in progress
§ Current version is very

simple
§ Useful for in-house testing
§ A more advanced version

will likely be developed
soon.

Kerbin the single core support structure for Ariane

Kerbin

A
PB

-in
te

rc
on

ne
ct

GPIO

A
XI

 -
in

te
rc

on
ne

ct

Bus
Adapt

SPI M

UART

I2C

UART

SPI S

Boot
ROM

A
ria

neI$

D$

Timer

AXI2Per

Debug

FLL

Platforms

Accelerators

InterconnectPeripheralsRISC-V Cores

The main PULP systems we develop are cluster based

RI5CY

32b

Micro
riscy
32b

Zero
riscy
32b

Ariane

64b
AXI4 – InterconnectDMA GPIO

APB – Peripheral BusI2SUART

Logarithmic interconnectSPIJTAG

M

I

O
cluster

interconnect

A R5R5R5

M MMM
in

te
rc

on
ne

ct

Neurostream
(ML)

HWCrypt
(crypto)

PULPO
(1st order opt)

HWCE
(convolution)

R5

MI

O

in
te

rc
on

ne
ct

A

Single Core
• PULPino
• PULPissimo

Multi-core
• Fulmine
• Mr. Wolf

R5

§ Multiple RISC-V cores
§ Individual cores can be started/stopped with little overhead
§ DSP extensions in cores

§ Multi-banked scratchpad memory (TCDM)
§ Not a cache, there is no L1 data cache in our systems

§ Logarithmic Interconnect allowing all cores to access all banks
§ Cores will be stalled during contention, includes arbitration

§ DMA engine to copy data to and from TCDM
§ Data in TCDM managed by software
§ Multiple channels, allows pipelined operation

§ Hardware accelerators with direct access to TCDM
§ No data copies necessary between cores and accelerators.

The main components of a PULP cluster

CLUSTER

PULP cluster contains multiple RISC-V cores

RISC-V
core

RISC-V
core

RISC-V
core

RISC-V
core

CLUSTER

Tightly Coupled Data Memory

All cores can access all memory banks in the cluster

interconnect

RISC-V
core

Mem Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

Mem

Mem

CLUSTER

Tightly Coupled Data Memory

Data is copied from a higher level through DMA

interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

Mem

Mem
in

te
rc

on
ne

ct

L2
Mem

CLUSTER

Tightly Coupled Data Memory

There is a (shared) instruction cache that fetches from L2

interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

I$

Mem

Mem
in

te
rc

on
ne

ct

L2
Mem

I$ I$ I$

CLUSTER

Tightly Coupled Data Memory

Hardware Accelerators can be added to the cluster

interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

I$

HW
ACCEL

Mem

Mem
in

te
rc

on
ne

ct

L2
Mem

I$ I$ I$

CLUSTER

Tightly Coupled Data Memory

Event unit to manage resources (fast sleep/wakeup)

interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

I$

HW
ACCEL

Mem

Mem
in

te
rc

on
ne

ct

L2
Mem

I$ I$ I$

Event
Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

An additional microcontroller system (PULPissimo) for I/O

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
r
c

o
n

n
e

c
t

L2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

How do we work: Initiate a DMA transfer

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
r
c

o
n

n
e

c
t

L2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

Data copied from L2 into TCDM

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
r
c

o
n

n
e

c
t

L2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

Once data is transferred, event unit notifies cores/accel

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
r
c

o
n

n
e

c
t

L2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

Cores can work on the data transferred

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
r
c

o
n

n
e

c
t

L2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

Accelerators can work on the same data

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
r
c

o
n

n
e

c
t

L2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

Once our work is done, DMA copies data back

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
r
c

o
n

n
e

c
t

L2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

PULPissimo CLUSTER

Tightly Coupled Data Memory

During normal operation all of these occur concurrently

interconnect

RISC-V

core

MemDMA Mem MemMem

RISC-V

core

RISC-V

core

RISC-V

core

Mem Mem MemMem

I$

HW

ACCEL

Mem

Mem
in

te
r
c

o
n

n
e

c
t

L2

Mem

Mem

Cont

I/O

RISC-V

core

I$ I$ I$

Ext.

Mem

Event

Unit

Platforms

Accelerators

InterconnectPeripheralsRISC-V Cores

All these components are combined into platforms

RI5CY

32b

Micro
riscy
32b

Zero
riscy
32b

Ariane

64b
AXI4 – InterconnectDMA GPIO

APB – Peripheral BusI2SUART

Logarithmic interconnectSPIJTAG

M

I

O
cluster

interconnect

A R5R5R5

M MMM
in

te
rc

on
ne

ct

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

A R5R5R5

M MMMM

I

O in
te

rc
on

ne
ct

Neurostream
(ML)

HWCrypt
(crypto)

PULPO
(1st order opt)

HWCE
(convolution)

R5

MI

O

in
te

rc
on

ne
ct

A

Single Core
• PULPino
• PULPissimo

Multi-core
• Fulmine
• Mr. Wolf

Multi-cluster
• Hero

IOT HPC

R5
R5

§ These systems are meant to work as accelerators for larger systems
§ Optimized for data processing
§ We will cover three such implementations in this workshop

§ HERO
§ PowerPULP
§ Ariane + Open Piton

§ Both ETH Zürich and University of Bologna involved in EPI
§ Main contributions in Accelerator stream
§ Close collaboration with several groups
§ The idea is not necessary to use PULP
§ Leverage what we have developed so far

Multi-cluster systems for HPC applications

§ All are 28 FDSOI technology, RVT, LVT and RVT flavor
§ Uses OpenRISC cores
§ Chips designed in collaboration with STM, EPFL, CEA/LETI
§ PULPv3 has ABB control

Brief illustrated history of selected ASICs

PULP PULPv2 PULPv3

§ First multi-core systems that were designed to work on development
boards. Each have several peripherals (SPI, I2C, GPIO)

§ Mia Wallace and Fulmine (UMC65) use OpenRISC cores
§ Honey Bunny (GF28 SLP) uses RISC-V cores
§ All chips also have our own FLL designs.

The first system chips, meant for designing boards

Mia
Wallace

Honey
Bunny

Fulmine

§ Designed in collaboration with the Analog group of Prof. Huang
§ All chips with SMIC130 (because of analog IPs)
§ First three with OpenRISC, VivoSoC3 with RISC-V

Combining PULP with analog front-end for Biomedical apps

VivoSoC VivoSoC
v2.0

VivoSoC
v2.001

VivoSoC
v3

§ System chips in TSMC40 (Mr. Wolf) and UMC65
§ Mr. Wolf: IoT Processor with 9 RISC-V cores (Zero-riscy + 8x RI5CY)
§ Atomario: Multi cluster PULP system (2 clusters with 4 RI5CY cores)
§ Scarabaeus: Ariane based microcontroller

The new generation chips from 2018

Mr. Wolf Atomario Scarabaeus

§ All are 22nm Globalfoundries FDX, around 10 sqmm, 50-100 Mtrans
§ Poseidon: PULPissimo (RI5CY) + Ariane
§ Kosmodrom: 2x Ariane + NTX
§ Arnold: PULPissimo (RI5CY) + Quicklogic eFPGA

The large system chips from 2018

Poseidon Kosmodrom Arnold

We firmly believe in Open Source movement

First launched in February 2016 (github)

§ The way we design ICs has changed, big part is now infrastructure
§ Processors, peripherals, memory subsystems are now considered infrastructure
§ Very few (if any) groups design complete IC from scratch
§ High quality building blocks (IP) needed

§ We need an easy and fast way to collaborate with people
§ Currently complicated agreements have to be made between all partners
§ In many cases, too difficult for academia and SMEs

§ Hardware is a critical for security, we need to ensure it is secure
§ Being able to see what is really inside will improve security
§ Having a way to design open HW, will not prevent people from keeping secrets.

Open Hardware is a necessity, not an ideological crusade

§ Similar to Apache/BSD, adapted specifically for Hardware
§ Allows you to:

§ Use
§ Modify
§ Make products and sell them
without restrictions.

§ Note the difference to GPL
§ Systems that include PULP do not have to be open source (Copyright not Copyleft)
§ They can be released commercially
§ LGPL may not work as you think for HW

We provide PULP with SOLDER Pad License

http://www.solderpad.org/licenses/

§ The following are ok:
§ RTL code written in HDL, or a high-level language for HLS flow
§ Testbenches in HDL and associated makefiles, golden models

§ How about support scripts for different tools?
§ Synthesis scripts, tool startup files, configurations

§ And these are currently no go :
§ Netlists mapped to standard cell libraries
§ Placement information (DEF)
§ Actual Physical Layout (GDSII)

At the moment, open HW can (mostly/only) be HDL code

§ Many companies (we know of) are actively using PULP
§ They value that it is silicon proven
§ They like that it uses a permissive open source license

Silicon and Open Hardware fuel PULP success

The image part with relationship ID rId9 was not found in the file.

PULP @ ETH ZürichQUESTIONS?

@pulp_platform
http://pulp-platform.org

§ List your open source HW/SW on the
Eurolab4HPC www site and get

3000€
§ For winner & 1000€ for two runner ups
§ Register by 1st of March
§ https://www.eurolab4hpc.eu/open-

source/call/

§ Summer of Code activity on
Transprecision Computing

§ Up to 10x projects will be supported

6000€
§ Register by 1st of March
§ Has to be open source
§ http://oprecomp.eu/open-source

Who says Open Source does not pay?

https://www.eurolab4hpc.eu/open-source/call/
http://oprecomp.eu/open-source

June 11-14 Zürich, SWITZERLAND
§ Official RISC-V Workshop (June 11-12)
§ RISC-V foundation member meetings (June 13)
§ Eurolab4HPC, Open Source Innovation Camp (June 13)
§ Licensing and IP rights for Open source HW (June 13)
§ FOSSI: Path to high quality IP, Open source EDA tools (June 14)
§ Tutorials, demos, hackathons

Join us in Week of Open Source HW, June 11-14 Zürich

