

PULP PLATFORM Open Source Hardware, the way it should be!

Working with RISC-V

Part 4 of 5 : PULP Extensions and Accelerators

Davide Rossi Luca Benini

<davide.rossi@unibo.it> <luca.benini@unibo.it>

Summary

Working with RISC-V

- Part 1 Introduction to RISC-V ISA
- Part 2 Advanced RISC-V Architectures
- Part 3 PULP concepts
- Part 4 PULP Extensions and Accelerators
 - ISA Extensions
 - Shared Memory Accelerators
- Part 5 PULP based chips

ETH zürich

Why Hardware Acceleration, really?

- - PULP has been designed as a programmable, software-oriented platform
 - Software is *flexible* and SW-programmable platforms are capable of dealing with applications that are *highly irregular* or *unexpected* at design time
 - Software can be *highly efficient*, when it's fully using features exposed by the hardware
 - Software code is accessible by *many more developers*: intrinsically more open
 - ... but software is **not always enough**, and we also need **accelerators**
 - Some applications have *too stringent constraints* of energy/power
 - Some kernels are often used and computationally heavy at the same time
 - **Too many cores** (= area **= \$\$\$**) would be required to meet the performance constraints
 - Different kinds of accalerators are needed to address different needs in terms of Performance, Flexibility, Area.

Hardware Accelerators from a PULP-y Perspective

ETH zürich

Application Specific Instruction Processors

- Integrated in the Pipeline of Processors (ID Stage, EX Stage, WB Stage)
- Suffer from Register File Bandwidth Bottleneck (only 2 operands...)
- Require Adapting Compiler and Binutils
- Low Overhead for Control
- Auxiliary Processing Units (APU) Interface available in the RI5CY

Al Workloads from Cloud to Edge (Extreme?)

ACACES 2021 - Sept 2021

Hzürich

Ŷĵ,

RI5CY – Recap from Part 1

3-cycle ALU-OP, 4-cyle MEM-OP→IPC loss: LD-use, Branch

XPULP 25 kGE \rightarrow 40 kGE (1.6x) but 9+ times DSP!

PULP-NN: Xpulp ISA exploitation

Garofalo, Angelo et al. "PULP-NN: Accelerating Quantized Neural Networks on Parallel Ultra-Low-Power RISC-V Processors." Philosophical Transactions of the Royal Society A

ETH zürich

8

PEAC

ACACES 2021 - Sept 2021

Results: RV32IMCXpulp vs RV32IMC

- 8-bit convolution
 - Open source DNN library
- 10x through xPULP
 - Extensions bring real speedup
- Near-linear speedup
 - Scales well for regular workloads.
- ~2 8-bit MAC/Cycle/core 20
- 75x overall gain

Pushing Further: Quantized Neural Networks

• Model

Hzürich

Quantization (*)

Quantization Method	Top1 Accuracy		Weight Memory Footprint			
Full-Precision	70.9%		16.27 MB			
INT-8	70.1%		0.8%	4.06 MB 🖡		4x
INT-4	66.46%	ł	4.4%	2.35 MB	ŧ	7x
Mixed-Precision	68%		2.9%	2.09 MB		8x

Courtesy of Rusci M. «Example on MobilenetV1_224_1.0.»C

ACACES 2021 - Sept 2021

Quantized Neural Networks (QNNs) are the natural target for execution on constrained edge platforms.

50

Rusci M. et al., Memory-Driven Mixed Low Precision Quantization For Enabling Deep Network Inference On Microcontrollers. arXiv preprint arXiv:1905.13082.

PEAC

10

ETH zürich

PULP-NN Convolution Kernels (8-bit)

Example of quantized kernel structure

- Leverages an optimized computational model based on CMSIS-NN library
- Exploits HWC organization + SIMD MAC of Xpulpv2 ISA extension
- At every MatMul iteration it fetches
 - 2 im2col
 - 4 filters
- And generates 8 output pixels

PEAC

11

XpulpV2 Overheads (2-bit, 4-bit kernels)

Sub-byte Convolution Kernel on XpulpV2 ISA

Overhead to extract compressed weights

Im2col function

Overhead to extract compressed ifmap

Re-Quantization

XpulpNN: ISA Extensions for QNN on PULP

Arithmetic SIMD instructions

32-bit operators

Supported Ops: ALU, Comparison, Shift, abs, Dot Product

No need to unpack sub-byte data

Multi-cycle instruction to efficiently handle the quantization process in HW

ALU SIMD Op.	Description for <i>nibble</i>
pv.add[.sc].{n, c}	rD[i] = rs1[i] + rs2[i]
pv.sub[.sc].{n, c}	rD[i] = rs1[i] - rs2[i]
$pv.avg(u)[.sc].\{n, c\}$	rD[i] = (rs1[i] + rs2[i]) >> 1
Vector Comparison Op.	
$pv.max(u)[.sc].{n, c}$	rD[i] = rs1[i] > rs2[i] ? rs1[i] : rs2[i]
$pv.min(u)[.sc].\{n, c\}$	rD[i] = rs1[i] < rs2[i] ? rs1[i] : rs2[i]
Vector Shift Op.	
$pv.srl[.sc].{n, c}$	rD[i] = rs1[i] >> rs2[i] Shift is logical
pv.sra[.sc].{n, c}	rD[i] = rs1[i] >> rs2[i] Shift is arithmetic
pv.sll[.sc].{n, c}	$rD[i] = rs1[i] \ll rs2[i]$
Vector abs Op.	
pv.abs.{n, c}	rD[i] = rs1[i] < 0? - $rs1[i]$: $rs1[i]$
Dot Product Op.	
pv.dotup[.sc].{n, c}	rD = rs1[0]*rs2[0] + + rs1[7]*rs2[7]
pv.dotusp[.sc].{n, c}	rD = rs1[0]*rs2[0] + + rs1[7]*rs2[7]
pv.dotsp[.sc].{n, c}	rD = rs1[0]*rs2[0] + + rs1[7]*rs2[7]
pv.sdotup[.sc].{n, c}	rD = rs1[0]*rs2[0] + + rs1[7]*rs2[7] + rD
pv.sdotusp[.sc].{n, c}	rD = rs1[0]*rs2[0] + + rs1[7]*rs2[7] + rD
pv.sdotsp[.sc].{n, c}	rD = rs1[0]*rs2[0] + + rs1[7]*rs2[7] + rD
Quantization Op.	
pv.qnt.{n, c}	Dedicated Quantization Instruction

A. Garofalo, G. Tagliavini, F. Conti, L. Benini and D. Rossi, "XpulpNN: Enabling Energy Efficient and Flexible Inference of Quantized Neural Networks on RISC-V based IoT End Nodes," in IEEE Transactions on Emerging Topics in Computing, 2021

1) Multi-precision Dotp Unit

2) MAC/Load Extension

Hzürich

Mac-Load: PULP-NN inner kernel

8-bit Matmul kernel with PULP-NN

8-bit MatMul kernel With MAC + Load

<pre>lp.setup p.lw p.lw p.lw p.lw p.lw p.lw p.lw pv.sdotusp.b pv.sdotusp.b pv.sdotusp.b pv.sdotusp.b pv.sdotusp.b pv.sdotusp.b pv.sdotusp.b</pre>	<pre>11, 12,end w1, 4(aw1!) w2, 4(aw2!) w3, 4(aw3!) w4, 4(aw4!) x1, 4(ax1!) x2, 4(ax2!) s1, x1, w1 s2, x1, w1 s2, x1, w2 s3, x1, w3 s4, x1, w4 s5, x2, w1 s6, x2, w2</pre>	HW LOOP LD/ST WITH POST INCREMENT 8-B SIMD MAC 8 SIMD MACs with 6 explicit	INIT NN-RF Pv.nnsdotusp. pv.nnsdotusp. pv.nnsdotusp. pv.nnsdotusp. lp.setup pv.nnsdotup.h pv.nnsdotusp. pv.nnsdotusp. pv.nnsdotusp. pv.nnsdotusp. pv.nnsdotusp. pv.nnsdotusp. pv.nnsdotusp.	<pre>h zero, aw1,16 h zero, aw2,18 h zero, aw3,26 h zero, aw4,22 h zero, ax1,8 l1, l2, end zero,ax2,9 b s1, aw2, 0 b s2, aw4, 2 b s3, aw3, 4 b s4, ax1, 14 b s5, aw2, 17 b s6, aw4, 19</pre>	8 SIMD MACs with
<pre>pv.sdotusp.b pv.sdotusp.b pv.sdotusp.b pv.sdotusp.b nd: pv.sdotusp.b</pre>	s4, x1, w4 s5, x2, w1 s6, x2, w2 s7, x2, w3 s8, x2, w4	8 SIMD MACs with 6 explicit LOADs	<pre>pv.nnsdotusp. pv.nnsdotusp. pv.nnsdotusp. pv.nnsdotusp. pv.nnsdotusp. end: pv.nnsdotusp.</pre>	 b s4, ax1, 14 b s5, aw2, 17 b s6, aw4, 19 b s7, aw3, 21 b s8, aw1, 23 	8 SIMD MACs with 1 explici LOAD

Wi Xi : weight/activation elements AW_i AX_i : addresses for the MEM access Li : loop setup

S_i : accumulators

ACACES 2021 - Sept 2021

16

TH zürich

Mixed-Precision Kernel (Overheads)

N.Bruschi et. al., "Enabling mixed-precision quantized neural networks in extreme-edge devices," ACM International Conference on Computing Frontiers, 2020.

Hzürich

Mixed Precision SIMD Processor

G. Ottavi, A. Garofalo, G. Tagliavini, F. Conti, L. Benini and D. Rossi, "A Mixed-Precision RISC-V Processor for Extreme-Edge DNN Inference," 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2020, pp. 512-517

PEAC

18

Mixed-Precision Core: New Formats Required

pv.dotsp .h	pv.dotup .h	pv.dotusp.h	pv.sdotsp.h	pv.sdotup.h	pv.sdotusp.h	dotn variants
pv.dotsp.b	pv.dotup.b	pv.dotusp.b	pv.sdotsp.b	pv.sdotup.b	pv.sdotusp.b	uoip variants
pv.dotsp.n	pv.dotup.n	pv.dotusp.n	pv.sdotsp.n	pv.sdotup.n	pv.sdotusp.n	
pv.dotsp.c	pv.dotup.c	pv.dotusp.c	pv.sdotsp.c	pv.sdotup.c	pv.sdotusp.c	add varia
pv.dotsp.m4x2	pv.dotup.m4x2	pv.dotusp.m4x2	pv.sdotsp.m4x2	pv.sdotup.m4x2	pv.sdotusp.m4x2	auu variai
pv.dotsp.m8x2	pv.dotup.m8x2	pv.dotusp.m8x2	pv.sdotsp.m8x2	pv.sdotup.m8x2	pv.sdotusp.m8x2	
pv.dotsp.m8x4	pv.dotup.m8x4	pv.dotusp.m8x4	pv.sdotsp.m8x4	pv.sdotup.m8x4	pv.sdotusp.m8x4	
pv.dotsp.m16x8	pv.dotup.m16x8	pv.dotusp.m16x8	pv.sdotsp.m16x8	pv.sdotup.m16x8	pv.sdotusp.m16x8	
pv.dotsp.m16x4	pv.dotup.m16x4	pv.dotusp.m16x4	pv.sdotsp.m16x4	pv.sdotup.m16x4	pv.sdotusp.m16x4	
pv.dotsp.m16x2	pv.dotup.m16x2	pv.dotusp.m16x2	pv.sdotsp.m16x2	pv.sdotup.m16x2	pv.sdotusp.m16x2	
pv.dotsp.sc.h	pv.dotup.sc .h	pv.dotusp.sc .h	pv.sdotsp.sc.h	pv.sdotup.sc .h	pv.sdotusp.sc.h	
pv.dotsp.sc.b	pv.dotup.sc.b	pv.dotusp.sc.b	pv.sdotsp.sc.b	pv.sdotup.sc.b	pv.sdotusp.sc.b	
pv.dotsp.sc.c	pv.dotup.sc.c	pv.dotusp.sc.c	pv.sdotsp.sc.c	pv.sdotup.sc.c	pv.sdotusp.sc.c	
pv.dotsp.sc.n	pv.dotup.sc.n	pv.dotusp.sc.n	pv.sdotsp.sc.n	pv.sdotup.sc.n	pv.sdotusp.sc.n	×8
pv.dotsp.sc.m4x2	pv.dotup.sc.m4x2	pv.dotusp.sc.m4x2	pv.sdotsp.sc.m4x2	pv.sdotup.sc.m4x2	pv.sdotusp.sc.m4x2	x4 max v
pv.dotsp.sc.m8x2	pv.dotup.sc.m8x2	pv.dotusp.sc.m8x2	pv.sdotsp.sc.m8x2	pv.sdotup.sc.m8x2	pv.sdotusp.sc.m8x2	
pv.dotsp.sc.m8x4	pv.dotup.sc.m8x4	pv.dotusp.sc.m8x4	pv.sdotsp.sc.m8x4	pv.sdotup.sc.m8x4	pv.sdotusp.sc.m8x4	
pv.dotsp.sc.m16x8	pv.dotup.sc.m16x8	pv.dotusp.sc.m16x8	pv.sdotsp.sc.m16x8	pv.sdotup.sc.m16x8	pv.sdotusp.sc.m16x8	x2 min V
pv.dotsp.sc.m16x4	pv.dotup.sc.m16x4	pv.dotusp.sc.m16x4	pv.sdotsp.sc.m16x4	pv.sdotup.sc.m16x4	pv.sdotusp.sc.m16x4	×2
pv.dotsp.sc.m16x2	pv.dotup.sc.m16x2	pv.dotusp.sc.m16x2	pv.sdotsp.sc.m16x2	pv.sdotup.sc.m16x2	pv.sdotusp.sc.m16x2	ahs v
pv.dotsp.sci.h	pv.dotup.sci .h	pv.dotusp.sci .h	pv.sdotsp.sci.h	pv.sdotup.sci .h	pv.sdotusp.sci .h	
pv.dotsp.sci.b	pv.dotup.sci.b	pv.dotusp.sci.b	pv.sdotsp.sci.b	pv.sdotup.sci.b	pv.sdotusp.sci.b	6x4 v8x2
pv.dotsp.sci.c	pv.dotup.sci.c	pv.dotusp.sci.c	pv.sdotsp.sci.c	pv.sdotup.sci.c	pv.sdotusp.sci.c	6x2 x8x4
pv.dotsp.sci.n	pv.dotup.sci.n	pv.dotusp.sci.n	pv.sdotsp.sci.n	pv.sdotup.sci.n	pv.sdotusp.sci.n	1620
pv.dotsp.sci.m4x2	pv.dotup.sci.m4x2	pv.dotusp.sci.m4x2	pv.sdotsp.sci.m4x2	pv.sdotup.sci.m4x2	pv.sdotusp.sci.m4x2	1000
pv.dotsp.sci.m8x2	pv.dotup.sci.m8x2	pv.dotusp.sci.m8x2	pv.sdotsp.sci.m8x2	pv.sdotup.sci.m8x2	pv.sdotusp.sci.m8x2	1004
pv.dotsp.sci.m8x4	pv.dotup.sci.m8x4	pv.dotusp.sci.m8x4	pv.sdotsp.sci.m8x4	pv.sdotup.sci.m8x4	pv.sdotusp.sci.m8x4	
pv.dotsp.sci.m16x8	pv.dotup.sci.m16x8	pv.dotusp.sci.m16x8	pv.sdotsp.sci.m16x8	pv.sdotup.sci.m16x8	pv.sdotusp.sci.m16x8	> 500
pv.dotsp.sci.m16x4	pv.dotup.sci.m16x4	pv.dotusp.sci.m16x4	pv.sdotsp.sci.m16x4	pv.sdotup.sci.m16x4	pv.sdotusp.sci.m16x4	4x2)
pv.dotsp.sci.m16x2	pv.dotup.sci.m16x2	pv.dotusp.sci.m16x2	pv.sdotsp.sci.m16x2	pv.sdotup.sci.m16x2	pv.sdotusp.sci.m16x2	8x2 :
					· · · · · · · · · · · · · · · · · · ·	BX4 1
pv.dotsp.sci.m	16x8 pv.dotup.sci.n	n16x8 pv.dotusp.sci.m	16x8 pv.sdotsp.sc	i.m16x8 pv.sdotup.so	ci.m16x8 pv.sdotusp.sci	.m16x8 n4x2
pv.dotsp.sci.m	16x4 pv.dotup.sci.n	n16x4 pv.dotusp.sci.m	16x4 pv.sdotsp.sc	i.m16x4 pv.sdotup.so	ci.m16x4 pv.sdotusp.sci	.m16x4 n8x2
pv.dotsp.sci.m	16x2 pv.dotup.sci.n	n16x2 pv.dotusp.sci.m	16x2 pv.sdotsp.sc	i.m16x2 pv.sdotup.so	ci.m16x2 pv.sdotusp.sci	.m16x2 n8x4
pv.	uotspiserimitoxo pr	nuotupiseninizoxo pris	ecceptorinized p			n16x8
pv.	dotsp.sci.m16x4 pv	/.dotup.sci.m16x4 pv.o	lotusp.sci.m16x4 p	ov.sdotsp.sci.m16x4	pv.sdotup.sci.m16x4 pv.	saotusp.sci.m16x4
DV (dotspisci m16x2 pv	/.dotup.sci.m16x2 pv.c	lotusp.sci.m16x2 p	v.sdotsp.sci.m16x2	pv.sdotup.sci.m16x2 pv.	.sdotusp.sci.m16x2

iants variants

variants t variants **variants** variants variants

0 instructions

Virtual SIMD Instructions

- Encode operation as a virtual SIMD in the ISA (e.g. sdotsp.v)
- Format specified at runtime by a Control Register (e.g. 4x4)
- 180 \rightarrow 18 Instructions needed for ETH zürich SIMD DOTP
 - Potential to avoid code replica for different formats
 - Tiny Overhead on QNN for Switching format
 - Format switch not frequent in DNN, e.g. every layer.

pv.dotsp.h	pv.dotup.h	pv.dotusp.h	pv.sdotsp.h	pv.sdotup.h	pv.saotusp .n
pv.dotsp.b	pv.dotup.b	pv.dotusp.b	pv.sdotsp.b	pv.sdotup.b	pv.sdotusp.b
pv.dotsp.n	pv.dotup.n	pv.dotusp.n	pv.sdotsp.n	pv.sdotup.n	pv.sdotusp.n
pv.dotsp.c	pv.dotup.c	pv.dotusp.c	pv.sdotsp.c	pv.sdotup.c	pv.sdotusp.c
pv.dotsp.m4x2	pv.dotup.m4x2	pv.dotusp.m4x2	pv.sdotsp.m4x2	pv.sdotup.m4x2	pv.sdotusp.m4x2
pv.dotsp.m8x2	pv.dotup.m8x2	pv.dotusp.m8x2	pv.sdotsp.m8x2	pv.sdotup.m8x2	pv.sdotusp.m8x2
pv.dotsp.m8x4	pv.dotup.m8x4	pv.dotusp.m8x4	pv.sdotsp.m8x4	pv.sdotup.m8x4	pv.sdotusp.m8x4
pv.dotsp.m16x8	pv.dotup.m16x8	pv.dotusp.m16x8	pv.sdotsp.m16x8	pv.sdotup.m16x8	pv.sdotusp.m16x8
pv.dotsp.m16x4	pv.dotup.m16x4	pv.dotusp.m16x4	pv.sdotsp.m16x4	pv.sdotup.m16x4	pv.sdotusp.m16x4
pv.dotsp.m16x2	pv.dotup.m16x2	pv.dotusp.m16x2	pv.sdotsp.m16x2	pv.sdotup.m16x2	pv.sdotusp.m16x2
pv.dotsp.sc.h	pv.dotup.sc.h	pv.dotusp.sc.h	pv.sdotsp.sc.h	pv.sdotup.sc.h	pv.sdotusp.sc.h
pv.dotsp.sc.b	pv.dotup.sc.b	pv.dotusp.sc.b	pv.sdotsp.sc.b	pv.sdotup.sc.b	pv.sdotusp.sc.b
pv.dotsp.sc.c	pv.dotup.sc.c	pv.dotusp.sc.c	pv.sdotsp.sc.c	pv.sdotup.sc.c	pv.sdotusp.sc.c
pv.dotsp.sc.n	pv.dotup.sc.n	pv.dotusp.sc.n	pv.sdotsp.sc.n	pv.sdotup.sc.n	pv.sdotusp.sc.n
pv.dotsp.sc.m4x2	pv.dotup.sc.m4x2	pv.dotusp.sc.m4x2	pv.sdotsp.sc.m4x2	pv.sdotup.sc.m4x2	pv.sdotusp.sc.m4x2
pv.dotsp.sc.m8x2	pv.dotup.sc.m8x2	pv.dotusp.sc.m8x2	pv.sdotsp.sc.m8x2	pv.sdotup.sc.m8x2	pv.sdotusp.sc.m8x2
pv.dotsp.sc.m8x4	pv.dotup.sc.m8x4	pv.dotusp.sc.m8x4	pv.sdotsp.sc.m8x4	pv.sdotup.sc.m8x4	pv.sdotusp.sc.m8x4
pv.dotsp.sc.m16x8	pv.dotup.sc.m16x8	pv.dotusp.sc.m16x8	pv.sdotsp.sc.m16x8	pv.sdotup.sc.m16x8	pv.sdotusp.sc.m16x8
pv.dotsp.sc.m16x4	pv.dotup.sc.m16x4	pv.dotusp.sc.m16x4	pv.sdotsp.sc.m16x4	pv.sdotup.sc.m16x4	pv.sdotusp.sc.m16x4
pv.dotsp.sc.m16x2	pv.dotup.sc.m16x2	pv.dotusp.sc.m16x2	pv.sdotsp.sc.m16x2	pv.sdotup.sc.m16x2	pv.sdotusp.sc.m16x2
pv.dotsp.sci.h	pv.dotup.sci.h	pv.dotusp.sci.h	pv.sdotsp.sci .h	pv.sdotup.sci .h	pv.sdotusp.sci.h
pv.dotsp.sci.b	pv.dotup.sci.b	pv.dotusp.sci.b	pv.sdotsp.sci.b	pv.sdotup.sci.b	pv.sdotusp.sci.b
pv.dotsp.sci.c	pv.dotup.sci.c	pv.dotusp.sci.c	pv.sdotsp.sci.c	pv.sdotup.sci.c	pv.sdotusp.sci.c
pv.dotsp.sci.n	pv.dotup.sci.n	pv.dotusp.sci.n	pv.sdotsp.sci.n	pv.sdotup.sci.n	pv.sdotusp.sci.n
pv.dotsp.sci.m4x2	pv.dotup.sci.m4x2	pv.dotusp.sci.m4x2	pv.sdotsp.sci.m4x2	pv.sdotup.sci.m4x2	pv.sdotusp.sci.m4x2
pv.dotsp.sci.m8x2	pv.dotup.sci.m8x2	pv.dotusp.sci.m8x2	pv.sdotsp.sci.m8x2	pv.sdotup.sci.m8x2	pv.sdotusp.sci.m8x2
pv.dotsp.sci.m8x4	pv.dotup.sci.m8x4	pv.dotusp.sci.m8x4	pv.sdotsp.sci.m8x4	pv.sdotup.sci.m8x4	pv.sdotusp.sci.m8x4
pv.dotsp.sci.m16x8	pv.dotup.sci.m16x8	pv.dotusp.sci.m16x8	pv.sdotsp.sci.m16x8	pv.sdotup.sci.m16x8	pv.sdotusp.sci.m16x8
pv.dotsp.sci.m16x4	pv.dotup.sci.m16x4	pv.dotusp.sci.m16x4	pv.sdotsp.sci.m16x4	pv.sdotup.sci.m16x4	pv.sdotusp.sci.m16x4
pv.dotsp.sci.m16x2	pv.dotup.sci.m16x2	pv.dotusp.sci.m16x2	pv.sdotsp.sci.m16x2	pv.sdotup.sci.m16x2	pv.sdotusp.sci.m16x2

8-Cores Cluster + XpulpNN + M&L (22nm)

Recovering more efficiency? Sub-pJ/OP Accelerators

+ FFT, PCA, SVM, Mat-inv,...

Tightly-coupled HW Compute Engine

rich

Hardware Processing Engines (HWPEs)

HWPE efficiency vs. optimized RISC-V core

- 1. Specialized datapath (e.g. systolic MAC) & internal storage (e.g. linebuffer, accum-regs)
- 2. Dedicated control (no I-fetch) with shadow registers (overlapped config-exec)
- 3. Specialized high-BW interco into L1 (on data-plane)

externally, uses memory accesses (master ports)

TH zürich

HW Convolution Engine

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015, pp. 683-688.

ACACES 2021 - Sept 2021

PEAC

26

HWCE Sum-of-Products

ETHZürich

ACACES 2021 - Sept 2021

27

$$\mathbf{y}(k_{out}) = \text{binarize}_{\pm 1} \left(\mathbf{b}_{k_{out}} + \sum_{k_{in}} \left(\mathbf{W}(k_{out}, k_{in}) \otimes \mathbf{x}(k_{in}) \right) \right)$$

binarize_{\pm 1}(t) = sign $\left(\gamma \frac{t - \mu}{\sigma} + \beta \right)$
Binary

$$\text{binarize}_{0,1}(t) = \begin{cases} 1 \text{ if } t \ge -\kappa/\lambda \doteq \tau, \text{ else } 0 & (\text{when } \lambda > 0) \\ 1 \text{ if } t \le -\kappa/\lambda \doteq \tau, \text{ else } 0 & (\text{when } \lambda < 0) \end{cases}$$

inary product \rightarrow XC						
Α	В	out		А	В	out
-1	-1	+1		0	0	1
-1	+1	-1		0	1	0
+1	-1	-1		1	0	0
+1	+1	+1		1	1	1

28

XNE: XNOR Neural Engine

[Di Mauro et al. TCAS I, 2020]

²⁹

Hzürich

XNE Energy Efficiency

L1 SCM, L2 high-density, low leakgage SRAM (activations), MRAM (weights)

But... Accuracy Loss for BNNs is high even with retraining (10%)

Flexible allocation of precision is needed!

Working with RISC-V Flexibility needed: Binary-Based Quantization (BBQ) INT32 accumulator QNN layer: Q-bit output fmaps We with RISC-V $y(k_{out}) = quant$ $y(k_{out}) = quant$ $\sum_{k_{in}} (W(k_{out}, k_{in}) \otimes x(k_{in}))$ M-bit weights

Many $M \times N$ bits products...

... but one $M \times N$ product is the superposition of $M \times N$ 1-bit products!

$$\mathbf{y}(k_{out}) = quant \left(\sum_{i=0..N} \sum_{k_{in}} 2^{i} 2^{j} \left(\mathbf{W}_{bin}(k_{out}, k_{in}) \otimes \mathbf{x}_{bin}(k_{in}) \right) \right)$$

Q-bit output fmaps
1-bit weights

One quantized NN can be emulated by superposition of power-of-2 weighted $M \times N$ binary NN

Mixed-Precision Quantized Networks – CMIX-NN

[Capotondi et al. TCAS II, 2020]

+8% wrt most accurate INT8 mobilenetV1 fitting on-chip (192_0.5)

+7.5% wrt most accurate INT4 mobilenetV1 (224_1.0) fitting on chip

33

DEAC

ACACES 2021 - Sept 2021

H zürich

HW acceleration in perspective

Using 22FDX tech, NT@0.6V, High utilization, minimal IO & overhead

Energy-Efficient RV Core → 20pJ (8bit)

ISA-based 10-20x **→1-2pJ (8bit)**

oit) 📫

XPULPV2 &<mark>V3</mark>

XNE, CUTIE*

HWCE, RBE, NE

Configurable DP 10-20x \rightarrow 50-100fJ (4bit)

Fully specialized DP 10-20x →5-10fJ (ternary)

*See M. Scherer presentation, tinyML21 – sub 1fJ in 7nm

ACACES 2021 - Sept 2021

34

Towards In-Sensor: Achieving sub-mW average power?

1mW average power with 10mW active power (10GOPS @ 1pJ/OP) → sub mW sleep

Duty cycling not acceptable when input events are asynchronous → watchful Sleep

Log(P) Detect&Compress \rightarrow 1-10mW Watchful sleep \rightarrow <1mW

35

ACACES 2021 - Sept 2021

Need µW-range always-on Intelligence

HD-Based smart Wake-Up Module

HD-Based smart Wake-Up Module

PEAC

38

HD-Based smart Wake-Up Module

Not Only CNNs: Hyper-Dimensional Computing

In-memory Hyperdimensional Computing

N_{CLASS} cycles

41

HD-Based smart Wake-Up Module - Hypnos

[Eggiman et al. arxiv.org/abs/2102.02758]

github.com/pulp-platform/hypnos **Design (post P&R)** GF22 UHT Technology 670kGE Area Max. Frequency 3 MHz f_{clk} 32kHz 200kHz 1kSPS/Channel max. sampling rate 150 SPS/Channel 0.99uW 6.21uW $\mathsf{P}_{\mathsf{SWU}}$, dynamic 0.7uW 0.7uW P_{SWU}, leakage 1.28uW 8.00uW P_{SPI}, dynamic P_{SWU, total} Measured 14.9uW 2.97uW

Implemented with lowest leakage cell library (UHVT)

ACACES 2021 - Sept 2021

ETH zürich

PULP in HPC?

- So far, focus on **low-power** applications: near-sensor processing, nano-UAVs, etc...
- ... what about high-performance computing?
 - energy efficiency of capital importance (power = \$\$\$ spent for cooling, energy bill)
- Hardware accelerators provide a key technology for HPC
 - compute-dominated workloads
 - highly parallel workloads
 - efficiency in Joules/op and power envelope in kW are important metrics
 - flexibility is also of primary importance
- Our focus so far has been on **artificial intelligence**
 - deep inference + deep learning: NTX

NTX: Boosting HWPEs for Deep Learning

The **Neural Training Accelerator** (**NTX**) [4] is built around a *float32 fused multiply-accumulate* core specialized for deep learning applications (ReLU, masking...)

Datapath supports additional ReLU, comparison, and masking operations (for DNN layer derivatives)

ETH zürich

NTX: Boosting HWPEs for Deep Learning

The **Neural Training Accelerator** (**NTX**) [4] is built around a *float32 fused multiply-accumulate* core specialized for deep learning applications (ReLU, masking...)

5 nested hardware loops and three address generators

NTX: Boosting HWPEs for Deep Learning

The **Neural Training Accelerator** (**NTX**) [4] is built around a *float32 fused multiply-accumulate* core specialized for deep learning applications (ReLU, masking...)

Memory-mapped control

HPEAC 46

ACACES 2021 - Sept 2021

NTX: Boosting HWPEs for Deep Learning

The **Neural Training Accelerator** (**NTX**) [4] is built around a *float32 fused multiply-accumulate* core specialized for deep learning applications (ReLU, masking...)

2 ports into cluster memory read operands and write back results.

NTX-Augmented Clusters

Computation in a cluster is dominated by accelerators (NTX)

F. Schuiki, M. Schaffner, F. K. Gürkaynak and L. Benini, "A Scalable Near-Memory Architecture for Training Deep Neural Networks on Large In-Memory Datasets," in *IEEE Transactions on Computers*, vol. 68, no. 4, pp. 484-497, 1 April 2019.

ETHZürich

ACACES 2021 - Sept 2021

NST Stream MAC example

ETHZürich

ACACES 2021 - Sept 2021

ETH zürich

NTX-Augmented Clusters

Many clusters are connected through a higher level interconnect (e.g. AXI) to scale up computing performance

0 ://asic.

Parallel Ultra Low Power

Luca Benini, Davide Rossi, Andrea Borghesi, Michele Magno, Simone Benatti, Francesco Conti, Francesco Beneventi, Daniele Palossi, Giuseppe Tagliavini, Antonio Pullini, Germain Haugou, Manuele Rusci, Florian Glaser, Fabio Montagna, Bjoern Forsberg, Pasquale Davide Schiavone, Alfio Di Mauro, Victor Javier Kartsch Morinigo, Tommaso Polonelli, Fabian Schuiki, Stefan Mach, Andreas Kurth, Florian Zaruba, Manuel Eggimann, Philipp Mayer, Marco Guermandi, Xiaying Wang, Michael Hersche, Robert Balas, Antonio Mastrandrea, Matheus Cavalcante, Angelo Garofalo, Alessio Burrello, Gianna Paulin, Georg Rutishauser, Andrea Cossettini, Luca Bertaccini, Maxim Mattheeuws, Samuel Riedel, Sergei Vostrikov, Vlad Niculescu, Hanna Mueller, Matteo Perotti, Nils Wistoff, Luca Bertaccini, Thorir Ingulfsson, Thomas Benz, Paul Scheffler, Alessio Burello, Moritz Scherer, Matteo Spallanzani, Andrea Bartolini, Frank K. Gurkaynak,

and many more that we forgot to mention

http://pulp-platform.org

