' % PULP PLATFORM

P Open Source Hardware, the way it should be!

Working with RISC-V
from open ISA to open Architecture to open Hardware
Part 1 of 5 : Introduction to RISC-V ISA

Luca Benini <luca.benini@unibo.it>
Davide Rossi <davide.rossi@unibo.it>

y .'h‘ \ -‘\' _.} 'v';,/
- .]'."': . ,«‘:-,'.,-’:
o n A t.’ A
e {'\; - -
' | r =%) ’“ SRt = jome
ZU IC ! {100

http:l/pulp-platform.org , @pulp_platform n https://lwww.youtube.com/pulp_platform

ing with RISC-V

Summary

= Part 1 - Introduction to RISC-V ISA
= \What RISC-V is about
= Description of ISA, and basic principles
= Simple 32b implementation (lbex by LowRISC)
= How to extend the ISA (CV32E40P by OpenHW group)

ACACES 2021 - Sept 2021

Working with RISC-V

RISC-V Instruction Set Architecture £ RISC-V
= Started by UC-Berkeley in 2010 S

= Contract between SW and HW _

= Partitioned into user and privileged spec

= Standard governed by RISC-V foundation
» ETHZ is a founding member of the foundation
= Necessary for the continuity

= Defines 32, 64 and 128 bit ISA

= No implementation, just the ISA
= Different implementations (both open and close source)

= At ETHZ+UNIBO we specialize in
efficient implementations of RISC-V cores

*,
-/

ISA
User Privileged

ACACES 2021 - Sept 2021

Working with RISC-V

RISC-V maintains basically a PDF document

&« C # riscv.org/specifications/ 1 o e‘ﬂ

Join the Mailing Lists & info@riscv.org R | Member Login

Pl RISC-V

ABOUT ¥ MEMBERSHIP ~ T HARDWARE & SOFTWARE 7 NEWS 7 EVENTS ~

Specifications A / Specifications

e note, RISC-V ISA and related specifications are developed, ratified and maintained by RISC-V International

contributing members within the RISC-V International Technical Committee. Operating details of the Technical

™ . YTIr= N macific atian : oA S e . 1 . ¥ -) § _ 1T
Unpriviteged Specification ittee can be found in the RISC-V International Tech Group. Work on the specification is performed on GitHub

* Privileged I5A Specification and the GitHub issue mechanism can be used to provide input into the specification,

-

Debug Specification

ISA Specification

The specifications shown below represent the current, ratified releases:

e () Software Status
B * Volume 1, Unprivileged Specv. 20191213 [PDF] [GitHub (latest)]

- C-V CORES * Volume 2, Privileged Spec v. 20190608 [PDF] [GitHub (latest)]
. WS Eore Debug Specification

* External

=bug Support v. 0.13.2 [PDF]

ACACES 2021 -

P

Working with RISC-V

ISA defines the mstructlons that processor uses

C++source #1 X

A~
1
L
3
4
5
6
7
8
g

18
11
12
13
14
15
16
17
13
19
28
21
22

a8 +- v £ 4 C4+

void gemm_bin({int M, int N, int K, float ALPHA,
char ™*&, int lda,
float *B, int ldb,
float *C, int ldc)

int i,7,k;
for(i = 8; 1 < M; ++1){
- for(k = 8; k < K; ++k){
char A_PART = A[i*lda+k];
if(A_PART){
for(j = @; j < N; ++3){
I C[i*ldc+j] += B[k*1ldb+j];
¥
I else {
for(j = 8; j < N; ++j){
C[i*ldc+j] -= B[k*1ldb+j];

-

RISC-V rvBdge clang (trunk) (Editor #1, Compiler #1) C++ X

RISC-V rvB4gc clang (trunk)> (/] Compiler options...

A~ £ Output..~ Y Filter...~ B Libraries ~

.LBBO_7;

1d a8, -56(s8)

al, al, 2

71 ae, ag, al
72 flw fte, 8(a8d)
73 1d ag, e(sa)
74 Tw al, -68(s=8)
75 lw a3, -64(s8)
76 al, al, a3
77 al, al, a2
78 al, al, 2
79 ag, a8, al
88 , 8(a8)
81 fadd.s fte, fti, fte
82 s 8(ae)

ACACES 2021

=+ Add new... v
in Loop: Header=BBB_6 D

C++ program
translated to

lw al, -76(s8)
Tw al, -68(s8)
mul al, al, a2
Tw a2, -72(s8)
al, al, a2 RISC-V

instructions
defined by ISA.

This will run on
ANY RISC-V
implementation

¢ Add tool...

- Sept 2021

ing with RISC-V

RISC-V Ecosystem

= Binutils — upstream = 0S

= GCC - upstream = Linux, sel4, freeRTOS, zephyr

_ .
= Simulator: . | |
- "Spike’ - reference = SW maintained by different parties
= QEMU, Gem5 = Binutils and GCC by Sifive a Berkeley start-up

= OpenOCD

ACACES 2021 - Sept 2021

E
M
A
F

X O O

Integer instructions (frozen)

Reduced number of registers

Multiplication and Division
(frozen)

Atomic instructions (frozen)
Single-Precision Floating-
Point (frozen)

Double-Precision Floating-
Point (frozen)

Compressed Instructions
(frozen)

Non Standard Extensions

= Kept very simple and extendable

= \Wide range of applications from loT to HPC

RV + word-width + extensions
= RV32IMC: 32bit, integer, multiplication, compressed

User specification:
= Separated into extensions, only | is mandatory

Privileged Specification (WIP):

= Governs OS functionality: Exceptions, Interrupts
= Virtual Addressing
= Privilege Levels

ACACES 2021 - Sept 2021

= Foundation members work in
task-groups

= Dedicated task-groups
= Formal specification
= Memory Model
= Marketing
= External Debug Specification

= ETH Zurich also contributes
= Bit manipulation
= Packed SIMD, DSP

Q
L

B
T
P

<

Quad-precision Floating-Point
Decimal Floating Point
Bit Manipulation

Transactional Memory

Packed SIMD

Dynamically Translated
Languages

Vector Operations

User-Level Interrupts

ACACES 2021 - Sept 2021

Working with RISC-V

P

What is so special about RISC-V

RISC-V base ISAs have either little-endian or big-endian memory systems, with the privileged
architecture further defining bi-endian operation. Instructions are stored in memory as a sequence
of 16-bit little-endian parcels, regardless of memory system endianness. Parcels forming one in-
struction are stored at increasing halfword addresses, with the lowest-addressed parcel holding the
lowest-numbered bits in the instruction specification.

We originally chose little-endian byte ordering for the RISC-V memory system because little-
endian systems are currently dominant commercially (all z86 systems; 108, Android, and Win-
dows for ARM). A minor point is that we have also found little-endian memory systems to be
more natural for hardware designers. However, certain application areas, such as IF networking,

= Major design decisions have been properly motivated and explained

= Reserved space for extensions, modular
= Open standard, you can help decide how it is developed

ACACES 2021 - Sept 2021

ing with RISC-V

The FREEDOM in RISC-V is implementation

= You can access all ISAs without (many) restrictions
= SW tools need to be developed so that they can generate code for that ISA

= Most ISAs are closed. Only specific vendors can implement it
= To use a core that implements an ISA, you have to license/buy it from vendor
= Open source SW (for the ISA) is possible but building HW is not allowed

lideger Hegistor Riglsber Ojaeral hrias

c29 ADD
| CHRCENL MR U impermtses real Lhe ral sl es2 eegmiess
it inkc register ml The fumcd 7 amd Jamar £ liwdds sedet tha .""l.l:ll:l“'ﬂhﬂlu[Llarr:‘-'.-
Syntax
ADD{S}{cond} {Rd}, An, Operand2

ADD{cond} {Rd}, Rn, #imml2? ; T32, 32-bit encoding only

ACACES 2021 - Sept 2021

ing with RISC-V

Are RISC-V processors better than XYZ?

= Actual performance depends on the implementation
= RISC-V does not specify implementation details (on purpose)

= Modern design, should deliver comparable performance

= |f implemented well, it should perform as well as other modern ISA implementations
= |n our experiments, we see no major weaknesses when compared to other ISAs
= |t also is not magically 2x better

» High-end processor performance is not so much about ISA

= [mplementation “details” like microarchitecture, memory hierarchy, target technology,
power management are more important.

ACACES 2021 - Sept 2021

ing with RISC-V

What is not so good about RISC-V?

= Still in development
= Some standards (privilege, vector, debug etc.) still being refined, adjusted.
= Tools and development environment needs to catch up.

= No canonical implementation (“the” RISC-V core)
= |t is free to implement, so many people did so, resulting in many cores

= Higher end (out of order, superscalar) cores not yet mature
= |n theory there is nothing to prevent a RISC-V based Linux laptop.

= |t will take some more time until RISC-V implementations can compete with other
commercial processors (which needed hundreds of man months of work)

= Getting there (Alibaba XT910, SiFive P550, Esperanto ET-Maxion, Semidynamics
Avispado, Rivos 77?7 and more coming every day!)

ACACES 2021 - Sept 2021

Reduced Instructio

Free & Openf’. , RIS C-"./ Reference Card

Basic Instructions (l)

32-bit Instruction Forma

ADD Word I v
ADD SP Imm * 15]
ADD SP Imm * 4|
Load Immediate|
Load Upper Imm

Privilege

3 :d’,rli',.im*l
L# rd,sp,immed
LD rd’,rsi’,imm*8
LD rd,sp,imm*&
Lg rd’,rs1’,imm+16
L0 rd,sp, imm*16

n Set: all in one page

Multiply/Divide (M)

Atomic Extensions (A)

——— e NNy T

Fmt| RVIZ{FID
WV (H]5}) X

R ‘m.x.{t}u

rsl®,rs2’,imm
rs2, imm
rsl®,rs2’, imm
rs2, imm
rslf,rs2" , imm

SW rsl*,rs2’,inm*4

sW rs2,sp, immr4

SD rsl’,rs2’, immeE

SD rs2z,sp,imm*g

SQ rs1*,rs2’ , imm*16

immk16

rd,rd,rsl
rd,rd, imm
rd,rd, imm
rd, rd, imm
5p,sp, immt 16
rd®,sp,imme4
rd, X0, imm
rd, imm
rd,rsl, x0
rd,rd,rsl

rd, rd, imm

rsl',x0,imm
rsl',x0, imm

%0, imm
x0,rs1,0

ra,imm
ra,rsl,0

15 14 13

R . . . iz 11 d0 9 8 T 5 4 a2 10

i 0 BU_ N W W su__@u 87§ 0 CR Tanctd /il T =] 5

R Funct? sl | fuocld i Topeode] €L e wfel Frr T op |
I Tmm {110 L Funcl3 [z Topoode €SS g Tmim] 2 ap
s ima][15] 4 nl | functy Tl opeode| CIW funct | imm [| op
SB [T/ 12 | imm 10:5 1 ol | functd |imm[e1] | imm{11] opeode | €L | functd | imm el Dimm | ed op
u immdl: 12 pe] Topeode CcSs | functd | imm rsl’ | imm | s op
7 T T T " functd offset rsl” | offset ap

U [mm2 | imafi0] i:mm[ll [o3I] upcode | CB [Fimeid | Jummm‘{m 55

RISC-¥ Integer Base (RVI2V641/1280, privileged, and r;prr:muf(runpmswd extension (RVC). Registers x1-x31 and the pe are 32 bits

wide in RV3ZE 64 in RV641, and 128 in RVI28{ (x0-0). RV64L/
classic integer RISC instruetions is requived. Every 16-bit RVC instruction matches an existing

281 add 10 instructions for the wider formats. The RVT base of <30

32-bit RVI instruction, See

ER G AOBE G
P ;m.{l{ﬂnlm.w rd,rsl
R /CVE.W.{H|S|DiQ} rd,rsl
F "~cvr.wu. {B|s|pjg) rd,rsl

LTI ISt UL LYY C A 2TOPS
HP/SP.DP.0P FI Pt}

rd,rsl
rd,rsl

rd, ral, ism

+RV{ 64,128,

rovr. (mjsiojg}. (L{T}U zd.r
FVT. {117} . 6513!910} d, r

3L S S—

b ADD. {S]D]Q}
® wsuB. {3|DiQ}
R Y. sivjo}
& I-u:v -{s|oja}

.{sicig
R jFmamo. {3{0iQ}
~ wMSUB. {3{D]0}
B l'wuus {siojoy
. 1. MMADD. {8{D|g}

ral,ra2, ism
rd,rsl,rs2
rd,rsl, rs2
rd,rsl, rs2
rd, ral, rs2
rd,rsl
rd,ral,rsl,r
rd,rsi,rs2,
rd,rsi,rs2, r
rd, rsl, rs2,

"T b SGN3. {3|D] Q)
Im {sinlQ}
TSCHIX. {SiD|g
FMIN. {S{D{Q}

f Prax.¢sioig
F B0 {S{D{Q}

rd,rsl, rs2
rd, rsl, ra2
rd,rsl,rs2
rd,rsl, rs2
rd,ral,re2
rd,rsl, rs2

FP saved registers
FP arguments/return values

Caller Temporaries
Callee Saved register/frame pointer
Callee Saved register
Caller Function arguments/return values]
Caller Function arguments
Caliee Saved registers
Caller ies
Caller FP temporaries
Callee
Calier
R welr-{siDiQ} rd,rsl, rs? Caller FP arguments

= :ru.ga{nw} xd, rsl,rs2 Callee FP saved registers

rd, r3l Caller FP temporaries

F .m:u:s.{alnlm
“RCSR

R .mRM

instructions (RV32M); 11 optional atomic instructions (RV32A4); and

3
23 floating-point instructions each .&.-rjurgiv- double- umd qmdngph -precision (RVI2F, RVI2D, RV320Q). The latter add registers f0f31, whose
width matches the widest precision, and a floating-point control and status rvgum—,fcsr Each A:qgn address adds some instructions: 4 for RVM,

11 for RVA, and & each for RVF:D/Q. Using regex notation, |}

means ¥el, so L

} s houk 1

D and L. See risc.org. (821715 revision}

» There are 32 registers, each 32/ 64 / 128 bits long
= Named x0 to x31
= X0 is hard wired to zero
» There is a standard ‘E’ extension that uses only 16 registers (RV32E)

= |n addition one program counter (PC)
= Byte based addressing, program counter increments by 4/8/16

= For floating point operation 32 additional FP registers
= Additional Control Status Registers (CSRs)

= Encoding for up to 4’096 registers are reserved. Not all are used.

ACACES 2021 - Sept 2021

ing with RISC-V

?, . .
¥ RISC-V Instructions four basic types
=R register to register operations
" operations with immediate/constant values

= S/ SB operations with two source registers
= U/UJ operations with large immediate/constant value

41 29 24 2§ 19 1y 14 1§ 11 ¥ il

funet? rs2 rsl funct3 rd opcode R-type
imm[11:)] rsl funct3 rd opcode [-type
imm[11:5] rs2 rsl functd § imm[4:0)] opcode S-type
imm|31:12 rd opcode U-type

ACACES 2021 - Sept 2021

ing with RISC-V

Encoding of the instructions, main groups

= Reserved opcodes for standard extensions

= Rest of opcodes free for custom implementations

= Standard extensions will be frozen/not change in the future

inst[4:2] 000 001 010 011 100 101 L10 111
inst[6:5] (> 32b)
00| LOAD | LOAD-FP |eustom-| MISC-MEM | OP-IMM | AUIPC | OP-INMM-32 48h
01| STORE | STORE-FP | custom-1 AMO oP LUI OP-32 64b
10| MADD MSUB | NMSUB | NMADD | OP-FP [eseried| custom-2/ruios | 486
11 | BRANCH | JALR reserved TAL SYSTEM | reserved | custom-32/rol128 | > 80b

ACACES 2021 - Sept 2021

Working with RISC-V

RISC-V is a load/store architecture

*,
-/

= All operations are on internal registers
= Can not manipulate data in memory directly

» Load instructions to copy from memory to registers

= R-type or I-type instructions to operate on them

= Store instructions to copy from registers back to memory
* Branch and Jump instructions

ACACES 2021 - Sept 2021

ing with RISC-V

Constants (Immediates) in Instructions

= |n 32bit instructions, not possible to have 32b constants

= Constants are distributed in instructions, and then sign extended
» The Load Upper Immediate (Lui) instruction to assemble/push constants

= [nstruction types according to immediate encoding

31 30 25 24 21 20 19 15 14 12 11 B 7 £ 0
| funct? rs2 rsl functd rd opcode | R-type
imm|11:0 ral funct3 rd opcode | I-type
imm|[11:5] rsd rsl funct3 imm|4:0] opcode | S-type
imm|(12] | imm{10:5 ra2 rs] funct3 | imm{4:1] | imm{11] | opcode | B-type
imm|31:12] rd opcode | U-type
imm|20)] imm[10:1 opcode | J-type

ACACES 2021 - Sept 2021

ing with RISC-V

Load from memory (1d), how immediates work
1d x9, 64(x22)

imm[11:0] 151 funct3d [#d | opcode

1

e +

32b memory address mp [DD
= Not possible to fit a 32b address in 32b encoding directly

= Take the content in source (rs1), add the immediate (imm) to it. This is the address
= Read from this address in the memory and load into the destination (rd) register

= RISC-V tries to minimize number of instructions
» The 1d instruction seems overly complicated, but you can use this for everything

ACACES 2021 - Sept 2021

ing with RISC-V

Branching, how addresses come together
bne x10, x11, 2000

imm[12] | imm[10:5] rs2 rsl funct3 |imm{4:1] | imm[11] | opcode

= Similar problem, how to encode jump address in branches
= Branch on Equal (beq) and Branch on Not Equal (bne)
= They use B type operations, need two source registers

= Jumps are relative to Program Counter (PC)
» The immediate (constant) shows how far we have to jump (PC-relative addressing)
= Works addresses within £ 4096. To branch further, we need several instructions.

ACACES 2021 - Sept 2021

ing with RISC-V

RISC-V Instruction Length is Encoded

= | SB of the instruction tells how long the instruction is
= Supports instructions of 16, 32, 48, 64, 80, 96, ..., 320 bit

= Allows RISC-V to have Compressed instructions

xxxxxxxxxxxxxx@d | 16-bit (aa £ 11)

XAXAXXXXAXXXAXXX | xxxxexaxxxxxBBBTY | 32-bit (bbb #£ 111)

---xet:-::{ XXXAX XXX AAAKEKKEX | rxxxxxrexx01i1ll 4x-hit

- CXAXEK | EXXAXXXXXXAXAXXX | xxxxxxxxx011111T | 64-bit

L XXXK | XXXAXXAXXAXXXXAX | xxxxxnnofd 11141 | (80+16%nnnn)-bit, nnon#£1111

coexRxx | xxcxoocxxxxx | oo IITITITIIE | Reserved for >320-bits

Byte Address: base+4 hase4-2 base

ACACES 2021 - Sept 2021

ing with RISC-V

Compressed Instruction extension ‘C’

= Use 16-bit instructions for common operations
= Code size reduction by 34%
= Compressed instructions increase fetch-bandwidth
= Allow for macro-op fusion of common patterns

Total Dynamic Bytes B <8664

2.0 T | ARMyT]

=3 aRkMyB
= REAG
1o 1.3 . C=a RWBAGE

1.0] 1

= 0.5

ﬂ'g.rna.mir_ inscruction D'_."IIEE.
(normalized (o xB86-64)

]
]

-f% "ﬂ
e, 2, by, %

ey
x86-64: 3.71 bytes / instruction RV64IC: 3.00 bytes / instruction

ACACES 2021 - Sept 2021

ing with RISC-V

So, how to build RISC-V cores?
= RISC-V ISA tells you the function

= You know which instructions are supported
= How they are encoded
= \What they are supposed to do

= |t does not tell you any implementation details

= Pipeline stages, memory hierarchy, computation units, in-order or out—of order
= Everyone is free to figure out how to best implement these

= Need to come up with a micro-architecture to implement it

= Determine which standard extensions are supported, how
= Choose a micro-architecture that fits performance requirements

ACACES 2021 - Sept 2021

= Area = CPU Design:

= in KGE equivalent (# of simple logic = |PC (Instructions per cycle)

gates) or mm? (technology dependent) = |PC implicitly measured in commonly used
benchmarks (Coremark, Dhrystone, Specint)

= Energy Efficiency: OPs/Joule

* Frequency:

= Depends on # of gates on longest path _
= Hardware Designer

= Power: = Tries to find a good balance
= Strongly depends on the above metrics Application dependent
= Leakage: dissipated even when not = |oT and HPC have different requirements

working (Area)

= Dynamic Power: dissipated on logic
transitions (frequency and area)

= One size does not fit all

ACACES 2021 - Sept 2021

Working with RISC-V

RISC-V cores developed at ETH Zurich

Low Cost DSP Streaming Linux
Core Enhanced Compute capable Core
Core Core

= Zero-riscy = RISCY = Snitch = Ariane
| | = RV32-
ICMDFX

ing with RISC-V

Zero-riscy / Ibex, small core for control applications

. : e | |zero-riscy core " prrrmrrrerrereerrere , ~ % 1
[| - i Vo e MAUCD
2-stage pipeline T _ﬁf . == i1l e
" . % :—11 — ! o i iM [::'_I—E:E:: ALU h:;é‘:. E
= Optimized for area 2 | [foreferche s [~ i (0} 5
c | > Decoder 511 — [
= Area: — l A — i‘"J_ ———cfopa pULT 295 | —
all F " cpopa RO
19 kGE (Zero-riscy) £ g foe o det | L rf*:fﬂdﬁnlva:-,_,
12 kGE (Micro-riscy) ; : :' E:Dn —— |
= Critical path: 87— | L - -

- 30 logic level ——
DI TEVE = Two Configurations:

" New name: lbex = Zero-riscy: RV32IMC (2,44 Coremark/MHz)

" LowRISC has taken over = 32 registers, hardware multiplier
Zero/Micro-Riscy in 2019

= 16 registers (E), software emulated multiplier

= Micro-riscy : RV32EC (0,91 Coremark/MHz)

P. Davide Schiavone et al., "Slow and steady wins the race? A comparison of ultra-low-power RISC-V cores for Internet-of-Things
applications," 2017 27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), 2017, pp. 1-8.

ACACES 2021 - Sept 2

021

Instruction Mem

l

Decoderty —_—
[addr_o i
| ’(L LSU %: 3
|‘-'EI A A ata_i 32

Ibex is a small and efficient, 32-bit, in-order RISC-V core with a 2-stage (or optionally 3-
stage) pipeline that implements the RV32IMCB instruction set architecture.

Since being contributed to lowRISC by ETH Ziirich, it has seen substantial investment of
development effort

ACACES 2021 - Sept 2021

Data Mem

P

Working with RISC-V

Roadmap of lbex

@ lowRISC

Stabilisation Perf phase 1
19Q3-19Q4 20Q1

Branch targetALU e
Third pipeline stage e
Single-cycle MUL 8
IS prototype

e RISC-V specification
conformance

e Codecleanupand
refactoring
(~50% LoC changed)

e Cl&DV (riscv-dv, Google)

Randomised execution
time
Non-data-dependent
fixed execution time
Parity checks

Security hardening
phase 1 20Q2

Perf phase 2
20Q2

Finalise IS
Static branch predictor
Bitmanip ISA extension

Bus scrambling

CFI (TBD)

Shadow PMP regs
OT secure coding
guidelines conform

Security hardening
phase 2 20Q3

ACACES 2021 - Sept 2021

ing with RISC-V

Growth of Ibex measured with Coremark/MHz

Past Work Today Future
-V
s
-7 3.9
3.9
2.92
2.55
2.43
Branch Third Pipeline Single Cycle Static Branch Bit Manipulation
Target ALU Stage Multiply Prediction ISA Extension

ACACES 2021 - Sept 2021

= Zero-riscy / Ibex is suitable for simple applications
= Control applications, book-keeping

= For number crunching, we need more capable cores
= Mainly used in clusters for signal processing / machine learning applications

* Tuned for energy efficiency
= Not necessarily lowest power

= Make use of custom extensions

= The Xpulp extensions enhance the capabllities
= Several Xpulp extensions in discussions for ratification

ACACES 2021 - Sept 2021

P

Working with RISC-V

Simplified pipeline for RISCY / CV32E40P

Instruction Memory

AInstruction

PC
Generation

Address

|> Program Counter

Instruction
Read

Align
Decompress

Jumps / Branches

P Fetch / Decode ‘

Register
File
Read

Decode
Operands
Forward

Data Write

P Decode / Execute ‘

Data Address

Address
Generation
Unit

|>Execute | Write Back ‘

Data Read

Register

File
Write

ACACES 2021 - Sept 2021

Working with RISC-V

RISCY: Our 32-bit workhorse

*,
-/

! " RISC-V core = e

= 4-stage pipeline ali== DTy i

}”%f:, | FCnntmller?'-F _ﬁ“ ._Eﬂcf Cf i L;. . LE

= 41 kGE F'refetchi“"- il B To% AU] C:D =

|E‘uﬁ‘ﬂ*r Eicksatlh B By %EE) 5

= Coremark/MHz 3.19 L q ot = o)

Rl ¢ o | |e] 25 B Ll |e MuLT | Ex

HIEAU B ==nll - =R ol :

* I[ncludes Xpulp |£ 4| | 7% | |Heh = L
extensions frre—d |, 1 i i e)

= SIMD = Different Options:
= Fixed point = FPU: IEEE 754 single precision
= Bit manipulations = Including hardware support for FDIV, FSQRT, FMAC, FMUL

= HW loops = Privilege support:
= Supports privilege mode M and U

M. Gautschi et al., "Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint Devices," in
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700-2713, Oct. 2017.

ACACES 2021 - Sept 2021

ing with RISC-V

RISC-V has space for custom instructions (X)

» There is a reserved decoding space for custom instructions
= Allows everyone to add new instructions to the core
» The address decoding space is reserved, it will not be used by future extensions

» Implementations supporting custom instructions will be compatible with standard ISA
= Code compiled for standard RISC-V will run without issues

= The user has to provide support to take advantage of the additional instructions
= Compiler that generates code for the custom instructions

= We use a lot this degree of freedom

= Great tool for exploring
» The goal is to help ratify these extensions as standards through working groups

ACACES 2021 - Sept 2021

ing with RISC-V

Our extensions to RISCY & support in GCC, LLVM

= Post-incrementing load/store instructions

= Hardware Loops (1p.start, 1p.end, 1p.count)

= ALU instructions
= Bit manipulation (count, set, clear, leading bit detection)
= Fused operations: (add/sub-shift)
* Immediate branch instructions

= Multiply Accumulate (32x32 bit and 16x16 bit)

SIMD instructions (2x16 bit or 4x8 bit) with scalar replication option
= add, min/max, dotproduct, shuffle, pack (copy), vector comparison

For 8-bit values the following can be executed in a single cycle
(pv.dotup.b)

Z =D, x K; + D, x K, + D; x K; + D; x K,

ACACES 2021 - Sept 2021

Q(b Working with RISC-V . .
¥ RISCY ISA extensions improve performance

for (i = 0; i < 100; i++)
dii] =a[i] + b[i];

Baseline Auto-incr load/store HW Loop

nv x5, 0 mv x5, 0 | p. setupi 100, Lend | p. setupi 25, Lend
nmv x4, 100 1Y x4, 100 I b x2, 0(x10!) lw x2, 0(x10!)
Lstart: Lstart: I b x3, 0(x11!) lw x3, 0(x11!)
| b x2, 0(x10) | b x2, 0(x10!) add x2, x3, x2 pv.add. b x2, x3, x2
| b x3, 0(x11) | b x3, 0(x11!) Lend: sb x2, 0(x12!) | Lend: sw x2, 0(x12!)
addi x10, x10, 1 addi x4, x4, -1
addi x11,x11, 1 add x2, x3, x2
add X2, X3, x2 sb x2, 0(x12!)

sb x2, 0(x12) bne Lstart
addi x4, x4, -1
addi x12,x12, 1

bne x4, x5, Lstart

x4, x5,

11 cycles/output 8 cycles/output 5 cycles/output 1,25 cycles/o

ACACES 2021 - Sept 2021

Working with RISC-V

Runtime for three different applications

€

_Numb_er of chles]

. 4

T

|

B RV32IMCXpulp
B RV32IMC

- RV32EC

2D Convolution

EEMBC Coremark

Scheduler Appllcatlon

ACACES 2021 - Sept 2021

Area [KGE]

40

35

=
th

ing with RISC-V

Different cores for different area budgets

40.7
39.9

20.8

10.8

5.2

RV32IMCXpulp

27.7%

12.2%

24.7%

13.6%

12.8%

X2.2

el i
CoCo
o

10.5

25

- ctr-status AF —
- load-store unit

ALU I

multdiv unit

debug unit

19.7%

X3.5 |

11.6 | |
35.0%]

[28.7%

13.4% 2.5 21.7%

RV32IMC

RV32EC

ACACES 2021 - Sept 2021

Different cores for diffe[ent power budgets

o6 T | I
o]]
prefetcher-buff
0.5 - 0.506 _ Bl reqister-file 7
R"E | D..#Elq' ﬂ.% -H.sﬂ!-us HF =2
[lload-store unit
04 - [decoder+cirl =
a3s |- ClaLv il
[|debug unit
0.298 12 7% [] muiltdiv unit -

=
&
|

0.225

=
ha
|

Powear Consump#on [mW]
=1
L
|

RV32IMCXpulp RV32IMC RV32EC

ACACES 2021 - Sept 2021

Working with RISC-V

Energy Efficiency: 2D-Convolution @55MHz, 0.8V

“1 RV32IMCXpqu'

RV32IMC
~ RV32EC

Normalized Log. Energy Consumption

No;‘malized Log.ulnter—Event Time

ACACES 2021 - Sept 2021

= Tomorrow, more advanced cores

= 64bit RISC-V core
= Discussion on performance
= \ector processing

* On Wednesday-Friday, we learn about PULP systems
= Cores alone can not do much, they need a system around
= Many core systems
= Managing Data
= Acceleration
= Actual Integrated Circuits from the PULP group

ACACES 2021 - Sept 2021

Parallel Ultra Low Power

Luca Benini, Davide Rossi, Andrea Borghesi, Michele Magno, Simone

! ' Benatti, Francesco Conti, Francesco Beneventi, Daniele Palossi, Giuseppe

' Tagliavini, Antonio Pullini, Germain Haugou, Manuele Rusci, Florian Glaser,
Fabio Montagna, Bjoern Forsberg, Pasquale Davide Schiavone, Alfio Di

‘ Mauro, Victor Javier Kartsch Morinigo, Tommaso Polonelli, Fabian Schuiki,

Stefan Mach, Andreas Kurth, Florian Zaruba, Manuel Eggimann, Philipp
Mayer, Marco Guermandi, Xiaying Wang, Michael Hersche, Robert Balas,

~m Antonio Mastrandrea, Matheus Cavalcante, Angelo Garofalo, Alessio

Burrello, Gianna Paulin, Georg Rutishauser, Andrea Cossettini, Luca
- Bertaccini, Maxim Mattheeuws, Samuel Riedel, Sergei Vostrikov, Viad

b Niculescu, Hanna Mueller, Matteo Perotti, Nils Wistoff, Luca Bertaccini, Thorir
i* ® |ngulfsson, Thomas Benz, Paul Scheffler, Alessio Burello, Moritz Scherer,

Matteo Spallanzani, Andrea Bartolini, Frank K. Gurkaynak,
and many more that we forgot to mention

. http://pulp-platform.org , @pulp_platform

