
PULP PLATFORM

Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Part 2 of 4 : Advanced RISC-V Architectures

Working with RISC-V

Luca Benini <lbenini@iis.ee.ethz.ch>

Frank K. Gürkaynak <kgf@ee.ethz.ch>

|

Summary

Working with RISC-V

▪ Part 1 – Introduction to RISC-V ISA

▪ Part 2 – Advanced RISC-V Architectures
▪ Going 64 bit

▪ Bottlenecks

▪ Safety/Security

▪ Vector units

▪ Part 3 – PULP concepts

▪ Part 4 – PULP based chips

ACACES 2020 - July 2020

|

▪ Zero-riscy

▪ RV32-ICM

▪ Micro-riscy

▪ RV32-CE

▪ Ariane

▪ RV64-IC(MA)

▪ Full

privileged

specification

▪ RI5CY

▪ RV32-ICMFX

▪ SIMD

▪ HW loops

▪ Bit

manipulation

▪ Fixed point

▪ Snitch

▪ RV32-

ICMDFX

PULP RISC-V Cores from Tiny to App-level

Low Cost

Core

Linux

capable Core

DSP

Enhanced

Core

Streaming

Compute

Core

32 bit 64 bit

ACACES 2020 - July 2020

Working with RISC-V

ARM Cortex-M0+ ARM Cortex-M4 ARM Cortex-A5

|

From IoT to HPC
▪ For the first 4 years of PULP, we used only 32bit cores
▪ Most IoT near-sensor applications work well with 32bit cores.

▪ 64bit memory space is not affordable in an MCU-class device

▪ But times change:
▪ Large datasets, high-precision numerical calculations (e.g. double precision FP) at the

IoT edge (gateways) and cloud

▪ Software infrastructure (OS – typically linux) with virtual memory assumes 64bit

▪ High-performance computing, being hot again, requires 64bit

▪ Research question – pJ/OP on 64bit data+address space is possible? How?

ACACES 2020 - July 2020

Working with RISC-V

|

An application class processor
▪ Virtual Memory

▪ Multi-program environment

▪ Efficient sharing and protection

▪ Operating System

▪ Highly sequential code

▪ Increase frequency to gain performance

▪ Large software infrastructure

▪ Drivers for hardware (PCIe, ethernet)

▪ Application SW (e.g.: Tensorflow, …)

▪ Larger address space (64-bit)

▪ Requires more hardware support

▪ MMU (TLBs, PTW)

▪ Privilege Levels

▪ More Exceptions (page fault, illegal access)

→Ariane an application class processor

NOT an ARM Cortex-A killer!

“Controller” core with must-have features for 64bit OSes

ACACES 2020 - July 2020

Working with RISC-V

|

ARIANE: Linux Capable 64-bit core
▪ Application class processor

▪ Linux Capable

▪ M, S and U privilege modes

▪ TLB

▪ Tightly integrated D$ and I$

▪ Hardware PTW

▪ Optimized for 1+GHz clock speed

▪ Frequency: 1+ GHz (22 FDX)

▪ Area: 100s kGE (200-400)

▪ Critical path: ~ 25-30 logic levels

▪ 6-stage pipeline

▪ In-order issue

▪ Out-of-order write-back

▪ In-order commit

▪ Branch-prediction

▪ RAS

▪ Branch Target Buffer

▪ Branch History Table

▪ Scoreboarding

▪ Designed for extendibility

ACACES 2020 - July 2020

Working with RISC-V

|

Absolute minimum necessary to boot Linux?
▪ Hardware
▪ 64 or 32 bit Integer Extension

▪ Atomic Extension

▪ Privilege levels U, S and M

▪ MMU

▪ FD Extension or out-of-tree Kernel patch

▪ 16 MB RAM

▪ Interrupts

▪ Core local interrupts (CLINT) like timer and

inter processor interrupts

▪ Serial

▪ Software
▪ Zero Stage Bootloader

▪ Device Tree Specification (DTS)

▪ RAM preparation (zeroing)

▪ Second stage bootloader

▪ BBL

▪ Uboot

▪ …

▪ Linux Kernel

▪ User-space applications (e.g.: Busybox)

or distro

ACACES 2020 - July 2020

Working with RISC-V

|

1

2 3

4 5 6
1. PC Gen

• Select PC

2. Instr. Fetch
• TLB

• Query I$

3. Instr. Decode
• Re-align

• De-compress

• Decode

4. Issue
• Select FU

• Issue

5. Execute

6. Commit
1. Write state

Ariane μARC

|

Frequency-IPC trade-off

Working with RISC-V

▪ Frequency:

▪ Increase frequency through pipelining

▪ Modern Intel CPUs have around 10 -

20 pipeline stages

▪ Adds significant complexity on the

cache interfaces

▪ Increased bubbles due to:

▪ Data Hazards ➔ Forwarding

▪ Structural Hazards ➔ Scoreboard

▪ Control Hazards ➔ Branch Prediction

ACACES 2020 - July 2020

|

Data Hazards - Forwarding

Working with RISC-V

ACACES 2020 - July 2020

|

Scoreboarding

Working with RISC-V

▪ Hide latency of multi-cycle instructions

▪ Clean and modular interface to functional
units ➔ scalability (FPU)

▪ Add issue port: Dual-Issue implementation

▪ Split execution into four steps:
▪ Issue: Relatively complex issue logic (extra pipeline-stage)

▪ Read Operands: From register file or forwarded

▪ Execute

▪ Write Back: Mitigate structural hazards on write-back path

▪ Mitigate structural hazards on write-back port

▪ Implemented as a circular buffer

ACACES 2020 - July 2020

|

Scoreboard

Working with RISC-V

ld x1 ← x2(0)

mul x2 ← x2, x2

addi x3 ← x0, 16

addi x2 ← x3, x1

ld x1 ← x2(128)

Issue Commit

ALU LSU MUL

Issue Commit

Regfile

Decode:
V FU OP rd src 1 src 2 result exception

0

0

0

0

ACACES 2020 - July 2020

|

Scoreboard – 3 cycle instruction (LD)

Working with RISC-V

ld x1 ← x2(0)

mul x2 ← x2, x2

addi x3 ← x0, 16

addi x2 ← x3, x1

ld x1 ← x2(128)

Issue Commit

ALU LSU MUL

Issue Commit

Regfile

Decode:
V FU OP rd src 1 src 2 result exception

0 LSU LD x1 x2 x0 0 No

0

0

0

ACACES 2020 - July 2020

|

Scoreboard – 2 cycle instruction (MUL)

Working with RISC-V

V FU OP rd src 1 src 2 result exception

0 LSU LD x1 x2 x0 0 No

0 MUL MUL x2 x2 x2 0 No

0

0

ld x1 ← x2(0)

mul x2 ← x2, x2

addi x3 ← x0, 16

addi x2 ← x3, x1

ld x1 ← x2(128)

Issue Commit

ALU LSU MUL

Issue
Commit

Regfile

Decode:

ACACES 2020 - July 2020

|

Scoreboard - single cycle instruction (ALU)

Working with RISC-V

V FU OP rd src 1 src 2 result exception

0 LSU LD x1 x2 x0 0 No

0 MUL MUL x2 x2 x2 0 No

0 ALU ADD x3 x0 x0 16 No

0

ld x1 ← x2(0)

mul x2 ← x2, x2

addi x3 ← x0, 16

addi x2 ← x3, x1

ld x1 ← x2(128)

Issue Commit

ALU LSU MUL

Issue

Commit

Regfile

Decode:

ACACES 2020 - July 2020

|

Scoreboard – Multiple Write Back

Working with RISC-V

V FU OP rd src 1 src 2 result exception

1 LSU LD x1 x2 x0 0x5555 No

1 MUL MUL x2 x2 x2 0xAAAA No

1 ALU ADD x3 x0 x0 16 No

0 ALU ADD x2 x3 x1 0 No

ld x1 ← x2(0)

mul x2 ← x2, x2

addi x3 ← x0, 16

addi x2 ← x3, x1

ld x1 ← x2(128)

Issue Commit

ALU LSU MUL

Issue

Commit

Regfile

Decode:

forward

ACACES 2020 - July 2020

|

Scoreboard - Commit

Working with RISC-V

V FU OP rd src 1 src 2 result exception

0 LSU LD x1 x2 x0 128 No

1 MUL MUL x2 x2 x2 0xAAAA No

1 ALU ADD x3 x0 x0 16 No

1 ALU ADD x2 x3 x1 0xAABA No

ld x1 ← x2(0)

mul x2 ← x2, x2

addi x3 ← x0, 16

addi x2 ← x3, x1

ld x1 ← x2(128)

Issue Commit

ALU LSU MUL

Issue
Commit

Regfile

Decode:

ACACES 2020 - July 2020

|

Scoreboard – Exception

Working with RISC-V

V FU OP rd src 1 src 2 result exception

1 LSU LD x1 x2 x0 128 Yes

0

1 ALU ADD x3 x0 x0 16 No

1 ALU ADD x2 x3 x1 0xAABA No

ld x1 ← x2(0)

mul x2 ← x2, x2

addi x3 ← x0, 16

addi x2 ← x3, x1

ld x1 ← x2(128)

Issue Commit

ALU LSU MUL

Issue

Commit

Regfile

Decode:

ACACES 2020 - July 2020

|

Scoreboard - Commit

Working with RISC-V

V FU OP rd src 1 src 2 result exception

1 LSU LD x1 x2 x0 128 Yes

0

0

1 ALU ADD x2 x3 x1 0xAABA No

ld x1 ← x2(0)

mul x2 ← x2, x2

addi x3 ← x0, 16

addi x2 ← x3, x1

ld x1 ← x2(128)

Issue Commit

ALU LSU MUL

Issue

Commit

Regfile

Decode:

ACACES 2020 - July 2020

|

Scoreboard - Commit

Working with RISC-V

V FU OP rd src 1 src 2 result exception

1 LSU LD x1 x2 x0 128 Yes

0

0

0

ld x1 ← x2(0)

mul x2 ← x2, x2

addi x3 ← x0, 16

addi x2 ← x3, x1

ld x1 ← x2(128)

Issue Commit

ALU LSU MUL

Issue Commit

Regfile

Decode:

ACACES 2020 - July 2020

|

Scoreboard - Commit

Working with RISC-V

V FU OP rd src 1 src 2 result exception

0

0

0

0

ld x1 ← x2(0)

mul x2 ← x2, x2

addi x3 ← x0, 16

addi x2 ← x3, x1

ld x1 ← x2(128)

Issue Commit

ALU LSU MUL

Issue Commit

Regfile

Decode:

ACACES 2020 - July 2020

|

Branch Prediction
▪ Branch Target Buffer

▪ Branch History Table

▪ 2-bit saturation counter

▪ Anti-aliasing bits

|

Caches
▪ Caches are a necessity for larger systems

▪ Private L1 caches

▪ I$ (16 kByte, 32 entries, 16 byte cache line, 4 way)

- 1,41% MR (Linux Boot)

▪ D$ (32 kByte, 32 entries, 16 byte cache line, 8

way) - 3,17% MR (Linux Boot)

▪ L2 cache (outside core domain)

▪ SRAMs (cache memories)

are slow compared to regular

logic

▪ Virtually indexed, physically

tagged data cache

ACACES 2020 - July 2020

Working with RISC-V

|

Memory Interfaces
▪ Load and stores are very common in RISC

architectures

▪ Caches add (costly) tag-comparison

▪ Address translation adds to this already critical path

▪ A fast CPU design needs to account for these effects

as much as possible

▪ Virtually indexed, physically tagged caches

▪ De-skewing

ACACES 2020 - July 2020

Working with RISC-V

|

Memory Management Unit (MMU)
▪ Essential for supporting Linux

▪ Ariane implements 39-bit page based

address translation (SV39)

▪ SV39 supports three levels of page tables

▪ 1st level: 1 gigabit-pages

▪ 2nd level: 2 megabit-pages

▪ 3rd level: (regular) 4 kilobit-pages

▪ Configurable number of TLB entries

▪ Hardware page table walker allows for

efficient TLB miss management

MMU

Virtual Address

TLB HIT TLB MISS

Physical Address
PTW

ACACES 2020 - July 2020

Working with RISC-V

|

Hardware Page Table Walker (HPTW)

Physical Page Number Base (CSR)

Virtual Page Number 2 Virtual Page Number 1 Virtual Page Number 0

V R W X A D G PPN

1 0 0 0 0 0 0 0xDEADBEEF

⠇ ⠇ ⠇ ⠇ ⠇ ⠇ ⠇ ⠇

1 1 0 0 0 0 0 0xCOFFEEBABE Leaf Node (1 Gigapage)

Pointer to next level PTE

|

Second Level Page Table

Virtual Page Number 2 Virtual Page Number 1 Virtual Page Number 0

V R W X A D G PPN

1 0 0 0 0 0 0 0xAAAAAAAAA

⠇ ⠇ ⠇ ⠇ ⠇ ⠇ ⠇ ⠇

1 1 0 0 0 0 0 0xBBBBBBBBBB

Analogous with third

and fourth level

V R W X A D G PPN

1 0 0 0 0 0 0 0xDEADBEEF

⠇ ⠇ ⠇ ⠇ ⠇ ⠇ ⠇ ⠇

1 1 0 0 0 0 0 0xCOFFEEBABE

Leaf Node (2 Megapage)

Pointer to next level PTE

|

Full Debug support
▪ JTAG interface

▪ OpenOCD support

▪ Debug Bridge to communicate with

hardware

▪ Allows for:

▪ run-control

▪ single-step

▪ inspection

▪ (hardware) breakpoints

▪ Essential for SW debug and hardware

bring-up

▪ 16 performance counters - not yet

RISC-V standard

▪ Trace task group working on PC

tracing (we participated)

ACACES 2020 - July 2020

Working with RISC-V

|

Verification
▪ RISC-V Tests

▪ Torture-Tests: constrained

random verification

▪ Google UVM-based

Verification framework

▪ CI-tests

▪ FPGA mapping

Working with RISC-V

|

Minimal Ariane SoC
▪ Minimum set of peripherals

to boot Linux

▪ Code is on SD Card

▪ Zero-stage bootloader is on

SystemVerilog boot ROM

▪ Serial I/O

|

OpenPiton + Ariane

▪ Boots SMP Linux

▪ New write-through cache

subsystem with invalidations

and the TRI interface

▪ LR/SC in L1.5 cache

▪ Fetch-and-op in L2 cache

▪ RISC-V Debug

▪ RISC-V Peripherals

If you are really passionate about cache coherent “scalable” machines…

OpenPiton+ Ariane: The First Open-Source, SMP Linux-booting RISC-V

System Scaling From One to Many Cores

Working with RISC-V

https://parallel.princeton.edu/papers/balkind_carrv2019.pdf

|

Open-sourcing
▪ Ariane has been open-sourced in February 2018

▪ Continued development on public GitHub servers

▪ We provided a Verilator port for an easy first evaluation

▪ Now supported by OpenHWGroup→ CV6A

Working with RISC-V

|

Ariane on Silicon
▪ 6-stage, integrated cache

▪ In order issue, out-of-order write-back, in-order-commit

▪ Supports privilege spec 1.11, M, S and U modes

▪ Hardware Page Table Walker

▪ Implemented in GF 22FDX (Poseidon, Kosmodrom, Baikonur), UMC65 (Scarabaeus)

▪ In 22nm: ~0.9GHz WC (SSG, 125/-40C, 0.72V), 1.1GHz Meas @0.8V

▪ 8-way 32kByte D$, 4-way 32kByte I$

▪ Core area: 175 kGE (210 with TP FPU)

▪ Application-class features are not cheap

▪ 38% area in TLB, PTW, 23% scoreboard

▪ 51.8pJ/op vs. 10pJ/OP in 22FDX @ 0.8V vs. RI5CY

▪ IPC 0.85 vs. 0.94, 1.7GHz vs. 690, just 2.1 faster than RI5CY

ACACES 2020 - July 2020

Working with RISC-V

|

▪ Flexible (cycle by cycle) precision

modulation (FP)→transpecision

▪ Save precious DRAM bandwidth

▪Custom number formats

▪Use float8, float16, float16alt

Low-Bitwidth Floating point Formats

ACACES 2020 - July 2020

Working with RISC-V

|

o
rm

a
li

e

n
e
r

y
 p
e
r

 calar ectorial I

 elati e ner y ost of instructions per

FP Precision and Energy trade-off
▪ Trade-off floating point

precision for instruction

energy

▪ Energy cost of FP

operations is super

linearly proportional

to data width

▪ Smaller FP formats take

less latency to complete

▪ SIMD style vectors yield higher throughput

▪ Improve energy to solution and time to solution up to 7.95x and 7.6x for FP8 workloads

ACACES 2020 - July 2020

Working with RISC-V

|

More FP Perf, efficiency: The “V” Extension

Interconnect

ARA

1GHz

8 DP GFLOPS

8 GB/s

Data

Instruction

Queue

ACK/TRAP

MMU

64b 64b

64b

Ariane
1GHz

2 DP GFLOPS

8 GB/s

Instruction Data

I$, D$

64b

ACACES 2020 - July 2020

Working with RISC-V

|

ARA

Vector Unit

Vector Register File

Extreme FP Performance: The “V” Extension

Interconnect

64b

Instruction

Queue

ACK/TRAP

MMU

64b 64b

64b

Ariane
1GHz

2 DP GFLOPS

8 GB/s

Instruction Data

I$, D$

256b

Wide

Bank

256b

Wide

Bank

256b

Wide

Bank

256b

Wide

Bank

256b

Wide

Bank

256b

Wide

Bank

256b

Wide

Bank

256b

Wide

Bank

VRF arbitration unit

64bit

FP

FMA

64bit

FP

FMA

64bit

FP

FMA

64bit

FP

FMA

Load

Store

Unit

Writeback

ACACES 2020 - July 2020

Working with RISC-V

|

Memory Bandwidth
▪ Arithmetic intensity

Operations per byte: data reuse of an

algorithm

One FMA → two operations

▪ Memory-boundness and compute-

boundness

▪ Ara targets 0.5 DP-FLOP/B

Memory bandwidth scales with the

number of physical lanes

Compute-bound

ACACES 2020 - July 2020

Working with RISC-V

|

RISC-V Vector Extension
▪ RISC-V “V” Extension

Cray-like vector processing, opposed to packed-SIMD

▪ Ara is based on the version 0.5

Work is being done to update it to the latest version

Open-source in 2020 (Q3)

t

FE
TC

H

D
EC

O
D

E

EXECUTE

ACACES 2020 - July 2020

Working with RISC-V

|

Ara main datapath elements
▪ ALU, MUL and FPU

▪ Transprecision functional units

Throughput of 64 bit per cycle

Packed-SIMD approach

▪ FPU

FP64, FP32, FP16, bfloat16

Independent pipelines for each data type

▪ Each with a different latency

ACACES 2020 - July 2020

Working with RISC-V

|

Vector Lane: base computational unit
▪ Per-lane Vector Register File

8 x 1RW SRAM banks

Functional units only access

their own section of the VRF

Requires an arbiter (banking conflicts)

▪ Operand queues

Hide latency due to banking

conflicts on the VRF

One FIFO per operand per datapath unit:

10 x 64b queues

Similar queues for output operands
ACACES 2020 - July 2020

Working with RISC-V

|

Ara with N identical vector lanes
▪ Instruction forked from Ariane’s issue stage

Instructions are issued non-speculatively

Bookkeeping by the sequencer

▪ Load/Store and Slide Units access all the VRF

Connected to each lane

Scalability issue

▪ W = 32.N bits wide memory interface

Keep Ara performance per bandwidth ratio at 0.5

DP-FLOP/B

ACACES 2020 - July 2020

Working with RISC-V

|

Matrix multiplication on Ara
▪ Standard algorithm (row times column + reduction) is slow

Highly sequential

▪ Use a vector of reductions instead

b11 b12 b13

b20 b21 b22 b23

b31 b32 b33

b10

b30

b00 b01 b02 b03

x

a00 a01 a02 a03

ACACES 2020 - July 2020

Working with RISC-V

|

a00b00

a00b01

a00b02

a00b03

Matrix multiplication on Ara
▪ Standard algorithm (row times column + reduction) is slow

Highly sequential

▪ Use a vector of reductions instead

b11 b12 b13

b20 b21 b22 b23

b31 b32 b33

b10

b30

b00 b01 b02 b03

x

a00 a01 a02 a03
a00

a00

a00

a00

b00

b01

b02

b03

vA vB

MAC

a00 b00 b01 b02 b03
vC

ACACES 2020 - July 2020

Working with RISC-V

|

a00b00 + a01b10

a00b01 + a01b11

a00b02 + a01b12

a00b03 + a01b13

Matrix multiplication on Ara
▪ Standard algorithm (row times column + reduction) is slow

Highly sequential

▪ Use a vector of reductions instead

b11 b12 b13

b20 b21 b22 b23

b31 b32 b33

b10

b30

b00 b01 b02 b03

x

a00 a01 a02 a03
a01

a01

a01

a01

b10

b11

b12

b13

vA vB

MAC

vC

a00b00

a00b01

a00b02

a00b03

ACACES 2020 - July 2020

Working with RISC-V

|

Matrix multiplication on Ara
▪ Load row i of matrix B into vB

▪ for (int j = 0; j < n; j++)

Load element A[j, i]

Broadcast it into vA

vC ← vA . vB + vC

vld vB, 0(addrB)

(Unrolled loop)

ld t0, 0(addrA)

addi addrA, addrA, 8

vins vA, t0, zero

vmadd vC, vA, vB, vC

ld t0, 0(addrA)

addi addrA, addrA, 8

vins vA, t0, zero

vmadd vC, vA, vB, vC

ACACES 2020 - July 2020

Working with RISC-V

|

Matrix Multiplication on ARA
▪ DP-MATMUL

n x n double-precision matrix multiplication

C ← A · B + C

▪ 32n² bytes of memory transfers

and 2n³ operations

n/16 DP-FLOP/B

Compute-bound in Ara for n > 8
Functional unit’s utilization for a 16x16 DP-MATMUL

ACACES 2020 - July 2020

Working with RISC-V

|

Issue rate performance limitation
▪ vmadds are issued at best

every four cycles

Since Ariane is single-issue

▪ If the vector MACs take less

than four cycles to execute,

the FPUs starve waiting for

instructions

Von Neumann Bottleneck

▪ This translates to a

boundary in the roofline plot

ACACES 2020 - July 2020

Working with RISC-V

|

Ara: 4 lanes GF 22FDX 1.25 GHz implementation

Lane 0Lane 1

Lane 2 Lane 3

ArianeFront-endVLSU
SLDU

(TT, V, ˙C)

ACACES 2020 - July 2020

Working with RISC-V

|

Ara: Figures of Merit
▪ Clock frequency

1.25 GHz (nominal),

0.92 GHz (worst condition)

▪ Area:

3400 kGE, 0.68 mm2

▪ 256 x 256 MATMUL

Performance: 9.8 DP-GFLOPS

Power: 259 mW

Efficiency: 38 DP-GFLOPS/W

⁓2.5x better than Ariane on same

benchmark

Area breakdown

ACACES 2020 - July 2020

Working with RISC-V

|

Ara: Scalability
▪ Each lane is almost independent

Contains part of the VRF and its

functional units

▪ Scalability limitations

VLSU and SLDU: need to communicate

to all banks

▪ Instance with 16 lanes:

1.04 GHz (nom.), 0.78 GHz (worst case)

10.7 MGE (2.13mm² in GF22)

32.4 DP-GFLOPS

40.8 DP-GFLOPS/W (peak)

VLSU

Ariane

SLDU

16 ARAs give you 1TFLOP at 12W - NOT BAD!

ACACES 2020 - July 2020

Working with RISC-V

|

HPC Vertical: The European Processor Initiative

▪ High Performance General Purpose

Processor for HPC

▪ High-performance RISC-V based

accelerator

▪ Computing platform for autonomous

cars

▪ Will also target the AI, Big Data and

other markets in order to be

economically sustainable

Europe Needs its own Processors

▪ Processors now control almost every

aspect of our lives

▪ Security (back doors etc.)

▪ Possible future restrictions on exports to

EU due to increasing protectionism

▪ A competitive EU supply chain for HPC

technologies will create jobs and growth

in Europe

▪ Sovereignty (data, economical, embargo)

http://pulp-platform.org @pulp_platform

Luca Benini, Davide Rossi, Andrea Borghesi, Michele Magno, Simone

Benatti, Francesco Conti, Francesco Beneventi, Daniele Palossi, Giuseppe

Tagliavini, Antonio Pullini, Germain Haugou, Manuele Rusci, Florian Glaser,

Fabio Montagna, Bjoern Forsberg, Pasquale Davide Schiavone, Alfio Di

Mauro, Victor Javier Kartsch Morinigo, Tommaso Polonelli, Fabian Schuiki,

Stefan Mach, Andreas Kurth, Florian Zaruba, Manuel Eggimann, Philipp

Mayer, Marco Guermandi, Xiaying Wang, Michael Hersche, Robert Balas,

Antonio Mastrandrea, Matheus Cavalcante, Angelo Garofalo, Alessio

Burrello, Gianna Paulin, Georg Rutishauser, Andrea Cossettini, Luca

Bertaccini, Maxim Mattheeuws, Samuel Riedel, Sergei Vostrikov, Vlad

Niculescu, Hanna Mueller, Matteo Perotti, Nils Wistoff, Luca Bertaccini, Thorir

Ingulfsson, Thomas Benz, Paul Scheffler, Alessio Burello, Moritz Scherer,

Matteo Spallanzani, Andrea Bartolini, Frank K. Gurkaynak,

and many more that we forgot to mention

