
PULP PLATFORM

Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Part 1 of 4 : Introduction to RISC-V ISA

Working with RISC-V

Frank K. Gürkaynak <kgf@ee.ethz.ch>

Luca Benini <lbenini@iis.ee.ethz.ch>

|

Summary

Working with RISC-V

▪ Part 1 – Introduction to RISC-V ISA
▪ What is RISC-V about

▪ Description of ISA, and basic principles

▪ Simple 32b implementation (Ibex by LowRISC)

▪ How to extend the ISA (CV32E40P by OpenHW group)

▪ Part 2 – Advanced RISC-V Architectures

▪ Part 3 – PULP concepts

▪ Part 4 – PULP based chips

ACACES 2020 - July 2020

|

Frank K. Gürkaynak (just call me Frank)

Senior scientist at ETH Zurich (means I am old) working with Luca

Studied / Worked at Universities:

in Turkey, United States and Switzerland (ETHZ and EPFL)

Involved in

Digital Design, Low Power Circuits, Open Source Hardware

Part of PULP project from the beginning in 2013

Few words about myself

Working with RISC-V

ACACES 2020 - July 2020

|

RISC-V Instruction Set Architecture

Working with RISC-V

▪ Started by UC-Berkeley in 2010

▪ Contract between SW and HW
▪ Partitioned into user and privileged spec

▪ External Debug

▪ Standard governed by RISC-V foundation
▪ ETHZ is a founding member of the foundation

▪ Necessary for the continuity

▪ Defines 32, 64 and 128 bit ISA
▪ No implementation, just the ISA

▪ Different implementations (both open and close source)

▪ At ETH Zurich we specialize in
efficient implementations of RISC-V cores

SW

HW

ISA

User Privileged

Applications

OS

D
e
b

u
g

ACACES 2020 - July 2020

|

RISC-V maintains basically a PDF document

Working with RISC-V

ACACES 2020 - July 2020

|

ISA defines the instructions that processor uses

Working with RISC-V

ACACES 2020 - July 2020

C++ program

translated to

RISC-V

instructions

defined by ISA.

This will run on

ANY RISC-V

implementation
Screen shot from the excellent Compiler Explorer by Matt Godbolt

https://godbolt.org/

|

RISC-V Ecosystem

Working with RISC-V

▪ Binutils – upstream

▪ GCC – upstream

▪ LLVM – upstream

▪ Simulator:
▪ ”Spike” - reference

▪ QEMU, Gem5

▪ OpenOCD

▪ OS
▪ Linux, sel4, freeRTOS, zephyr

▪ Runtimes
▪ Jikes, Ocaml, Go

▪ SW maintained by different parties
▪ Binutils and GCC by Sifive a Berkeley start-up

See https://github.com/riscv/riscv-wiki/wiki/RISC-V-Software-Status for an updated list

ACACES 2020 - July 2020

|

RISC-V ISA is divided into extensions
▪ Kept very simple and extendable
▪ Wide range of applications from IoT to HPC

▪ RV + word-width + extensions
▪ RV32IMC: 32bit, integer, multiplication, compressed

▪ User specification:
▪ Separated into extensions, only I is mandatory

▪ Privileged Specification (WIP):
▪ Governs OS functionality: Exceptions, Interrupts

▪ Virtual Addressing

▪ Privilege Levels

I Integer instructions (frozen)

E Reduced number of registers

M
Multiplication and Division

(frozen)

A Atomic instructions (frozen)

F
Single-Precision Floating-

Point (frozen)

D
Double-Precision Floating-

Point (frozen)

C
Compressed Instructions

(frozen)

X Non Standard Extensions

ACACES 2020 - July 2020

Working with RISC-V

|

Work continues on new RISC-V extensions

Working with RISC-V

▪ Foundation members work in

task-groups

▪ Dedicated task-groups
▪ Formal specification

▪ Memory Model

▪ Marketing

▪ External Debug Specification

▪ ETH Zurich also contributes
▪ Bit manipulation

▪ Packed SIMD

Q Quad-precision Floating-Point

L Decimal Floating Point

B Bit Manipulation

T Transactional Memory

P Packed SIMD

J
Dynamically Translated

Languages

V Vector Operations

N User-Level Interrupts

ACACES 2020 - July 2020

|

What is so special about RISC-V

Working with RISC-V

▪ It is FREE
▪ Everybody can build, sell, and make RISC-V cores available

▪ It is a modern design, no historical baggage
▪ Some of the more common ISAs (ARM, Intel..) have been around for 20+ years

Newer implementations, still need to be compatible to older designs.

▪ RISC-V benefited form the mistakes made by others, cleaner design

▪ Major design decisions have been properly motivated and explained

▪ Reserved space for extensions, modular

▪ Open standard, you can help decide how it is developed

ACACES 2020 - July 2020

|

The FREEDOM in RISC-V is implementation

Working with RISC-V

▪ You can access all ISAs without (many) restrictions
▪ SW tools need to be developed so that they can generate code for that ISA

▪ Most ISAs are closed. Only specific vendors can implement it
▪ To use a core that implements an ISA, you have to license/buy it from vendor

▪ Open source SW (for the ISA) is possible but building HW is not allowed

ACACES 2020 - July 2020

RISC-V ARM

|

Are RISC-V processors better than XYZ?

Working with RISC-V

▪ Actual performance depends on the implementation
▪ RISC-V does not specify implementation details (on purpose)

▪ Modern design, should deliver comparable performance
▪ If implemented well, it should perform as good as other modern ISA implementations

▪ In our experiments, we see no weaknesses when compared to other ISAs

▪ It also is not magically 2x better

▪ High-end processor performance is not so much about ISA
▪ Implementation details like technology capabilities, memory hierarchy, pipelining, and

power management are more important.

ACACES 2020 - July 2020

|

What is not so good about RISC-V?

Working with RISC-V

▪ Still in development
▪ Some standards (privilege, vector, debug etc.) still being refined, adjusted.

▪ Tools and development environment needs to catch up.

▪ No canonical implementation (the RISC-V core)
▪ It is free to implement, so many people did so, resulting in many cores

▪ Higher end (out of order, superscalar) cores not yet mature
▪ In theory there is nothing to prevent a RISC-V based Linux laptop.

▪ It will take some more time until RISC-V implementations can compete with other

commercial processors (which needed hundreds of man months of work).

ACACES 2020 - July 2020

|

Reduced Instruction Set: all in one page

B
as

ic
 I

n
st

ru
ct

io
n

s
(I

)
Privilege

Mode

Compressed

Instructions (C)

F
lo

at
in

g
 P

o
in

t
E

xt
en

si
o

n
s

Multiply/Divide (M)

Atomic Extensions (A)

ACACES 2020 - July 2020

Working with RISC-V

|

RISC-V Architectural State

Working with RISC-V

▪ There are 32 registers, each 32 / 64 / 128 bits long
▪ Named x0 to x31

▪ x0 is hard wired to zero

▪ There is a standard ‘E’ extension that uses only 16 registers (RV32E)

▪ In addition one program counter (PC)
▪ Byte based addressing, program counter increments by 4/8/16

▪ For floating point operation 32 additional FP registers

▪ Additional Control Status Registers (CSRs)
▪ Encoding for up to 4’096 registers are reserved. Not all are used.

ACACES 2020 - July 2020

|

RISC-V Instructions four basic types

Working with RISC-V

▪ R register to register operations

▪ I operations with immediate/constant values

▪ S / SB operations with two source registers

▪ U / UJ operations with large immediate/constant value

ACACES 2020 - July 2020

|

▪ Reserved opcodes for standard extensions

▪ Rest of opcodes free for custom implementations

▪ Standard extensions will be frozen/not change in the future

Encoding of the instructions, main groups

Working with RISC-V

ACACES 2020 - July 2020

|

RISC-V is a load/store architecture

Working with RISC-V

▪ All operations are on internal registers
▪ Can not manipulate data in memory directly

▪ Load instructions to copy from memory to registers

▪ R-type or I-type instructions to operate on them

▪ Store instructions to copy from registers back to memory

▪ Branch and Jump instructions

ACACES 2020 - July 2020

|

Constants (Immediates) in Instructions
▪ In 32bit instructions, not possible to have 32b constants
▪ Constants are distributed in instructions, and then sign extended

▪ The Load Upper Immediate (lui) instruction to assemble/push constants

▪ Instruction types according to immediate encoding

ACACES 2020 - July 2020

Working with RISC-V

|

Load from memory (ld), how immediates work

Working with RISC-V

ld x9, 64(x22)

▪ Not possible to fit a 32b address in 32b encoding directly
▪ Take the content in source (rs1), add the immediate (imm) to it. This is the address

▪ Read from this address in the memory and load into the destination (rd) register

▪ RISC-V tries to minimize number of instructions
▪ The ld instruction seems overly complicated, but you can use this for everything

32b memory address

Sign extend

Memory

ACACES 2020 - July 2020

|

Branching, how addresses come together

Working with RISC-V

bne x10, x11, 2000 // if x10 != x11, jump 2000 ahead

▪ Similar problem, how to encode jump address in branches
▪ Branch on Equal (beq) and Branch on Not Equal (bne)

▪ They use B type operations, need two source registers

▪ Jumps are relative to Program Counter (PC)
▪ The immediate (constant) shows how far we have to jump (PC-relative addressing)

▪ Works addresses within ± 4096. To branch further, we need several instructions.

ACACES 2020 - July 2020

|

RISC-V Instruction Length is Encoded
▪ LSB of the instruction tells how long the instruction is

▪ Supports instructions of 16, 32, 48, 64, 80, 96, … , 320 bit
▪ Allows RISC-V to have Compressed instructions

ACACES 2020 - July 2020

Working with RISC-V

|

Compressed Instruction extension ‘C’

Working with RISC-V

▪ Use 16-bit instructions for common operations
▪ Code size reduction by 34 %

▪ Compressed instructions increase fetch-bandwidth

▪ Allow for macro-op fusion of common patterns

x86-64: 3.71 bytes / instruction RV64IC: 3.00 bytes / instruction

ACACES 2020 - July 2020

|

So how to build RISC-V cores

Working with RISC-V

▪ RISC-V ISA tells you the architecture
▪ You know which instructions are supported

▪ How they are encoded

▪ What they are supposed to do

▪ It does not tell you any implementation details
▪ Pipeline stages, memory hierarchy, computation units, in-order or out–of order

▪ Everyone is free to figure out how to best implement these

▪ Need to come up with a micro-architecture to implement it
▪ Determine which standard extensions are supported, how

▪ Choose a micro-architecture that fits performance requirements

ACACES 2020 - July 2020

|

What are the Performance Metrics

Working with RISC-V

▪ Area
▪ in kGE equivalent (# of simple logic

gates) or mm2 (technology dependent)

▪ Frequency:
▪ Depends on # of gates on longest path

▪ Power:
▪ Strongly depends on the above metrics

▪ Leakage: dissipated even when not

working (Area)

▪ Dynamic Power: dissipated on logic

transitions (frequency and area)

▪ CPU Design:
▪ IPC (Instructions per cycle)

▪ IPC implicitly measured in commonly used

benchmarks (Coremark, Dhrystone, SpecInt)

▪ Energy Efficiency: OPs/Joule

▪ Hardware Designer
▪ Tries to find a good balance

▪ Application dependent

▪ IoT and HPC have different requirements

▪ One size does not fit all

ACACES 2020 - July 2020

|

▪ Zero-riscy

▪ RV32-ICM

▪ Micro-riscy

▪ RV32-CE

▪ Ariane

▪ RV64-IC(MA)

▪ Full

privileged

specification

▪ RI5CY

▪ RV32-ICMFX

▪ SIMD

▪ HW loops

▪ Bit

manipulation

▪ Fixed point

▪ Snitch

▪ RV32-

ICMDFX

RISC-V cores developed at ETH Zurich

Low Cost

Core

Linux

capable Core

DSP

Enhanced

Core

Streaming

Compute

Core

32 bit 64 bit

ACACES 2020 - July 2020

Working with RISC-V

|

Zero-riscy / Ibex, small core for control applications

Working with RISC-V

▪ 2-stage pipeline

▪ Optimized for area
▪ Area:

19 kGE (Zero-riscy)

12 kGE (Micro-riscy)

▪ Critical path:

~ 30 logic levels

▪ New name: Ibex
▪ LowRISC has taken over

Zero/Micro-Riscy in 2019

ACACES 2020 - July 2020

▪ Two Configurations:

▪ Zero-riscy: RV32IMC (2,44 Coremark/MHz)

▪ 32 registers, hardware multiplier

▪Micro-riscy : RV32EC (0,91 Coremark/MHz)

▪ 16 registers (E), software emulated multiplier

|

Ibex continues to grow with LowRISC

Working with RISC-V

Ibex is a small and efficient, 32-bit, in-order RISC-V core with a 2-stage (or optionally 3-

stage) pipeline that implements the RV32IMCB instruction set architecture.

Since being contributed to lowRISC by ETH Zürich, it has seen substantial investment of

development effort

ACACES 2020 - July 2020

Contributors40+

680

GitHub Issues

Pull Requests

314

|

Roadmap of Ibex

Working with RISC-V

ACACES 2020 - July 2020

|

Growth of Ibex measured with Coremark/MHz

Working with RISC-V

ACACES 2020 - July 2020

|

RI5CY / CV32E40P our main 32bit RISC-V core

Working with RISC-V

▪ Zero-riscy / Ibex is suitable for simple applications
▪ Control applications, book-keeping

▪ For our research we need more capable cores
▪ Mainly used in clusters for signal processing / machine learning applications

▪ Tuned for energy efficiency
▪ Not necessarily low power

▪ Make use of custom extensions
▪ The Xpulp extensions enhance the capabilities

▪ Several Xpulp extensions in discussions for ratification

ACACES 2020 - July 2020

|

Simplified pipeline for RI5CY / CV32E40P

Working with RISC-V

ACACES 2020 - July 2020

Instruction Memory Data Memory

Register

File

Read

Decode

Operands

Forward

Register

File

Write

Align

Decompress

PC

Generation

Execute

Units

Address

Generation

Unit

Data ReadData AddressData Write
Instruction

Read

Instruction

Address

P
ro

g
ra

m
 C

o
u

n
te

r

F
et

ch
 /

D
ec

o
d

e

D
ec

o
d

e
/ E

xe
cu

te

E
xe

cu
te

 /
 W

ri
te

 B
ac

k

Jumps / Branches

|

RI5CY: Our 32-bit workhorse
▪ 4-stage pipeline
▪ 41 kGE

▪ Coremark/MHz 3.19

▪ Includes Xpulp

extensions
▪ SIMD

▪ Fixed point

▪ Bit manipulations

▪ HW loops

▪Different Options:

▪ FPU: IEEE 754 single precision

▪ Including hardware support for FDIV, FSQRT, FMAC, FMUL

▪ Privilege support:

▪ Supports privilege mode M and U

ACACES 2020 - July 2020

Working with RISC-V

|

RISC-V has space for custom instructions (X)

Working with RISC-V

▪ There is a reserved decoding space for custom instructions
▪ Allows everyone to add new instructions to the core

▪ The address decoding space is reserved, it will not be used by future extensions

▪ Implementations supporting custom instructions will be compatible with standard ISA

▪ Code compiled for standard RISC-V will run without issues

▪ The user has to provide support to take advantage of the additional instructions

▪ Compiler that generates code for the custom instructions

▪ ETH Zurich regularly uses these instructions
▪ Great tool for exploring

▪ The goal is to help ratify these extensions as standards through working groups

ACACES 2020 - July 2020

|

Our extensions to RI5CY (with additions to GCC)

Working with RISC-V

▪ Post–incrementing load/store instructions

▪ Hardware Loops (lp.start, lp.end, lp.count)

▪ ALU instructions

▪ Bit manipulation (count, set, clear, leading bit detection)

▪ Fused operations: (add/sub-shift)

▪ Immediate branch instructions

▪ Multiply Accumulate (32x32 bit and 16x16 bit)

▪ SIMD instructions (2x16 bit or 4x8 bit) with scalar replication option

▪ add, min/max, dotproduct, shuffle, pack (copy), vector comparison

ACACES 2020 - July 2020

For 8-bit values the following can be executed in a single cycle

(pv.dotup.b)

Z = D1 × K1 + D2 × K2 + D3 × K3 + D4 × K4

|

RI5CY ISA extensions improve performance

Working with RISC-V

for (i = 0; i < 100; i++)

d[i] = a[i] + b[i];

mv x5, 0

mv x4, 100

Lstart:

lb x2, 0(x10)

lb x3, 0(x11)

addi x10,x10, 1

addi x11,x11, 1

add x2, x3, x2

sb x2, 0(x12)

addi x4, x4, -1

addi x12,x12, 1

bne x4, x5, Lstart

Baseline

11 cycles/output

mv x5, 0

mv x4, 100

Lstart:

lb x2, 0(x10!)

lb x3, 0(x11!)

addi x4, x4, -1

add x2, x3, x2

sb x2, 0(x12!)

bne x4, x5, Lstart

Auto-incr load/store

8 cycles/output

lp.setupi 100, Lend

lb x2, 0(x10!)

lb x3, 0(x11!)

add x2, x3, x2

Lend: sb x2, 0(x12!)

HW Loop

5 cycles/output

lp.setupi 25, Lend

lw x2, 0(x10!)

lw x3, 0(x11!)

pv.add.b x2, x3, x2

Lend: sw x2, 0(x12!)

Packed-SIMD

1,25 cycles/output

ACACES 2020 - July 2020

|

Runtime for three different applications

x6.1

x53.4

x1.3

x3.5
x1 x1

RV32IMCXpulp
RV32IMC

RV32EC

Scheduler ApplicationEEMBC Coremark2D Convolution

B
et

te
r

Extensions have more effect

ACACES 2020 - July 2020

Working with RISC-V

|

Different cores for different area budgets

x2.2

x3.5

B
et

te
r

RV32IMCXpulp RV32IMC RV32EC
ACACES 2020 - July 2020

Working with RISC-V

|

Different cores for different power budgets

x2.4
x2.7

B
et

te
r

ACACES 2020 - July 2020

Working with RISC-V

RV32IMCXpulp RV32IMC RV32EC

|

Energy Efficiency: 2D-Convolution @55MHz, 0.8V

649 ms 31 s
784 μs

4.78 ms

41.6 ms

B
et

te
r

RV32IMC
RV32EC

RV32IMCXpulp

More frequent events/ processing

ACACES 2020 - July 2020

Working with RISC-V

|

This was a short overview of basics of RISC-V

Working with RISC-V

▪ After the break, more advanced cores
▪ 64bit RISC-V core

▪ Discussion on performance

▪ Vector processing

▪ Tomorrow, we learn about PULP systems
▪ Cores alone can not do much, they need a system around

▪ Many core systems

▪ Managing Data

▪ Acceleration

▪ Actual Integrated Circuits from the PULP group

ACACES 2020 - July 2020

http://pulp-platform.org @pulp_platform

Luca Benini, Davide Rossi, Andrea Borghesi, Michele Magno, Simone

Benatti, Francesco Conti, Francesco Beneventi, Daniele Palossi, Giuseppe

Tagliavini, Antonio Pullini, Germain Haugou, Manuele Rusci, Florian Glaser,

Fabio Montagna, Bjoern Forsberg, Pasquale Davide Schiavone, Alfio Di

Mauro, Victor Javier Kartsch Morinigo, Tommaso Polonelli, Fabian Schuiki,

Stefan Mach, Andreas Kurth, Florian Zaruba, Manuel Eggimann, Philipp

Mayer, Marco Guermandi, Xiaying Wang, Michael Hersche, Robert Balas,

Antonio Mastrandrea, Matheus Cavalcante, Angelo Garofalo, Alessio

Burrello, Gianna Paulin, Georg Rutishauser, Andrea Cossettini, Luca

Bertaccini, Maxim Mattheeuws, Samuel Riedel, Sergei Vostrikov, Vlad

Niculescu, Hanna Mueller, Matteo Perotti, Nils Wistoff, Luca Bertaccini, Thorir

Ingulfsson, Thomas Benz, Paul Scheffler, Alessio Burello, Moritz Scherer,

Matteo Spallanzani, Andrea Bartolini, Frank K. Gurkaynak,

and many more that we forgot to mention

|

The extensions translate to real speed-ups

Working with RISC-V

▪ 8-bit convolution
▪ Open source DNN library

▪ 10x through xPULP
▪ Extensions bring real

speedup

▪ Near-linear speedup
▪ Scales well for regular

workloads.

▪ 75x overall gain 0

10

20

30

40

50

60

70

80

90

1 CORE 1 CORE 2 CORES 4 CORES 8 CORES

Sp
e

e
d

u
p

[R
V

3
2

IM
C

 b
as

e
lin

e
]

PULP(RV32IMCXpulp)

Near-Linear
Speedup

Overall Speedup of 75x

10x Speedup w.r.t.
RV32IMC

(ISA does matter☺)

