PULP PLATFORM

Open Source Hardware, the way it should be!

Working with RISC-V

Part 1 of 4 : Introduction to RISC-V ISA

P

Frank K. Gurkaynak <kgf@ee.ethz.ch>
Luca Benini <lbenini@iis.ee.ethz.ch>

ETHzurich

http://pulp-platform.org , @pulp_platform u https://lwww.youtube.com/pulp_platform

ing with RISC-V

Summary

= Part 1 - Introduction to RISC-V ISA
= \What is RISC-V about
= Description of ISA, and basic principles
= Simple 32b implementation (lbex by LowRISC)
= How to extend the ISA (CV32E40P by OpenHW group)

ACACES 2020 - July 2020

Working with RISC-V

Few words about myself

Frank K. Giirkaynak
Senior Scientist

ETH Ziirich
Integrated Systcms Laboratory
Glonastra
2 Ztmch Swhzerland
@us ee.ethz.ch

ACACES 2020 - July 2020

Working with RISC-V

RISC-V Instruction Set Architecture £z RISC
= Started by UC-Berkeley in 2010 SW

= Contract between SW and HW _

= Partitioned into user and privileged spec

= Standard governed by RISC-V foundation
» ETHZ is a founding member of the foundation
= Necessary for the continuity

= Defines 32, 64 and 128 bit ISA

= No implementation, just the ISA
= Different implementations (both open and close source)

= At ETH Zurich we specialize in
efficient implementations of RISC-V cores

*,
-/

ISA
User Privileged

ACACES 2020 - July 2020

&«

Working with RISC-V

RISC-V maintains basically a PDF document

C

riscv.org/specifications/

Join the Mailing Lists

g vV SPEL CATIONM G
sle=V AFEL Al !

Unprivileged Specification
Privileged ISA Specification

Debug Specification

®

ABOUT © MEMBERSHIP ~

& info@riscv.org ¥ jn & &

HARDWARE & SOFTWARE ~

MEWS ~

r 0

| Member Login

EVENTS ~

/ Specifications

Please note, RISC-V ISA and related specifications are developed, ratified and maintained by RISC-V International

contributing members within the RISC-V International Technical Committee. Operating details of the Technical

¢ Volume 1, Unprivileged Specv. 20191213 [PDF] [GitHub (latest)]

* Volume 2, Privileged Spec v. 20190608 [PDF] [GitHub (latest)]

Debug Specification

Committee can be found in the RISC-V International Tech Group. Work on the specification is performed on GitHub

and the GitHub issue mechanism can be used to provide input into the specification.

ISA Specification

The specifications shown below represent the current, ratified releases:

External Debug

Supportv.

= =

0.13.2 [PDF]

Working with RISC-V

2

ISA defines the mstructlons that processor uses

C++ source #1 X bt RISC-V rvBdgc clang (trunk) (Editor #1, Compiler #1) C++ X
A~ B 4+~ v 2 & T — RISC-V rvBdgc clang (trunk» @ Compiler options...
void gemm_bin(int M, int N, int K, float ALPHA, Leaa
- el - - i - i i - - -
char *A, int 1da, T A £ Output... Y Filter... B Libraries <+ Add new... <+ Add tool...

.LBBB_7; # 1in Loop: Header=BB8_6 D

% ey) C+* program
a2, -68(s8)

L a1, a2 translated to

a2, -72(s=8)

float *B, int ldb,
float *C, int ldc)

int i,7,k;

1

2

3

4

5
6

7 for(i = 8; 1 < M; ++1){
8

9

for(k = 8; k < K; ++k){ :

char A_PART = A[i*1lda+k]; al, al, a2 RISC'V
10 if(A_PART){ i a1, al, 2 . .
11 For(3 = 05 3 < Ny +43) 7 20, 20, a1 Instructions
12 | C[i*1dc+j] += B[k*1db+j];] 72 » 9(a8) .
13 ¥ 73 ag, 8(se)
14 e 2 = e, | defined by ISA.
15 for(j = @; j < N; ++j){ 75 a3, -64(s@)
16 C[i*1dc+j] -= B[k*ldb+j]; 76 al, al, a3 . .
17) 7 a1, a1, a2 This will run on
18 } 78 i al, al, 2
19 79 ag, ad, al -
2N : » == | ANYRISC-V

2 COMPILER . * e e) implementation
EXPLORER '

ACACES 2020 - July 2020

ing with RISC-V

RISC-V Ecosystem

= Binutils — upstream = 0S

» GCC - upstream = Linux, sel4, freeRTOS, zephyr

. :
= Simulator: - | |
- "Spike” - reference = SW maintained by different parties
= QEMU, Gem5 = Binutils and GCC by Sifive a Berkeley start-up

= OpenOCD

ACACES 2020 - July 2020

E
M
A
F

X O O

Integer instructions (frozen)

Reduced number of registers

Multiplication and Division
(frozen)

Atomic instructions (frozen)
Single-Precision Floating-
Point (frozen)

Double-Precision Floating-
Point (frozen)

Compressed Instructions
(frozen)

Non Standard Extensions

= Kept very simple and extendable

= \Wide range of applications from loT to HPC

RV + word-width + extensions
= RV32IMC: 32bit, integer, multiplication, compressed

User specification:
= Separated into extensions, only | is mandatory

Privileged Specification (WIP):

= Governs OS functionality: Exceptions, Interrupts
= Virtual Addressing
= Privilege Levels

ACACES 2020 - July 2020

= Foundation members work in | 5 quad-precision Floating-Paint
task-groups

| Decimal Floating Point

= Dedicated task-groups
= Formal specification
= Memory Model
= Marketing

= External Debug Specification 7 Dynamically Translated
Languages

Bit Manipulation

B
T Transactional Memory
P

Packed SIMD

= ETH Zurich also contributes

= Bit manipulation
= Packed SIMD N User-Level Interrupts

<

Vector Operations

ACACES 2020 - July 2020

Working with RISC-V

What is so special about RISC-V

RISC-V base ISAs have either little-endian or big-endian memory systems, with the privileged
architecture further defining bi-endian operation. Instructions are stored in memory as a sequence
of 16-bit little-endian parcels, regardless of memory system endianness. Parcels forming one in-
struction are stored at increasing halfword addresses, with the lowest-addressed parcel holding the

lowest-numbered bits in the instruction specification.

We originally chose little-endian byte ordering for the RISC-V memory system because little-
endian systems are currently dominant commercially (all 286 systems; i0S, Android, and Win-
dows for ARM). A minor point is that we have also found little-endian memory systems to be
more natural for hardware designers. However, certain application areas, such as IP networking,

= Major design decisions have been properly motivated and explained
= Reserved space for extensions, modular
= Open standard, you can help decide how it is developed

ACACES 2020 - July 2020

ing with RISC-V

The FREEDOM in RISC-V is implementation

= You can access all ISAs without (many) restrictions
= SW tools need to be developed so that they can generate code for that ISA

= Most ISAs are closed. Only specific vendors can implement it
= To use a core that implements an ISA, you have to license/buy it from vendor
= Open source SW (for the ISA) is possible but building HW is not allowed

Integer Register- Register Operations

c29 ADD

RV32] defines several arithmetic R-type operations. All operations read the rsi and rs2 registers) .
a8 source operands and write the result into register rd. The funct? amd functy fields select the Add without Lﬂﬂ"‘__.'
s of o
Syntax
25 M 20 19 15 14 . 12 11 76 ". MD{S}{C{:‘M} {Rd}_, Rﬂ_, ﬂpE'r"[JME'
| f 152 rsl func t3 red opeode
5 3 5 T ADD{cond} {Rd}, Rn, #imml12 ; T32, 32-bit encoding only
HHHHHHHH srel ADD,/SLT/SLTU dlest 0P

ACACES 2020 - July 2020

ing with RISC-V

Are RISC-V processors better than XYZ?

= Actual performance depends on the implementation
= RISC-V does not specify implementation details (on purpose)

= Modern design, should deliver comparable performance

= |f implemented well, it should perform as good as other modern ISA implementations
= [n our experiments, we see no weaknesses when compared to other ISAs
= |t also is not magically 2x better

» High-end processor performance is not so much about ISA

= Implementation details like technology capabilities, memory hierarchy, pipelining, and
power management are more important.

ACACES 2020 - July 2020

ing with RISC-V

What is not so good about RISC-V?

= Still in development
= Some standards (privilege, vector, debug etc.) still being refined, adjusted.
= Tools and development environment needs to catch up.

= No canonical implementation (the RISC-V core)
= |t is free to implement, so many people did so, resulting in many cores

= Higher end (out of order, superscalar) cores not yet mature
= |n theory there is nothing to prevent a RISC-V based Linux laptop.

= |t will take some more time until RISC-V implementations can compete with other
commercial processors (which needed hundreds of man months of work).

ACACES 2020 - July 2020

Reduced Instructio

Free & Open

Basic Instructions (l)

32-bit Instruction Forma

rd’,rsl’,imm

rd, imm

rd’,rsl’,imm rd’,rsl’,imm+*8

rd, imm

rd",rsl",imm
rd, imm

rd,sp,imm*8
rd’,rsl’,imm*16

n Set: all in one page

Multiply/Divide (M)

Atomic Extensions (A)

- - B
Name | Fmt| RVI2{FID|Q} (HP/SP.DP.OP FI Pt, +RV{64,128

Move from integer | P " “MV. (H[5}.X FMv. (D|Q).X

Move to integer] R VX, (H|S) PV X. (D] Q)

rsl®,rs2",imm rsl’,rs2’,imm*4

rs2, imm

ra2,sp,imm*4

rsl®,rs2’,imm rsl’,rs2’,immeg

rs2,imm

2R DS\
C.ADDI4SPN

rs2,sp,imm*8

rsl’,rs2’,imm*16

rs?,sp, imm*16
rd,rd,rsl
rd,rd, imm
rd,rd, imm
rd, rd, imm
sp,sp, imm* 16
rd*, sp,imm*4
rd,x0, imm
rd, imm
rd,rel, x0
rd,rd,rsl

rd, rd, imm

rsl',x0,imm
rsl',x0,imm

%0, imm
*0,rs1,0

ra,imm
ra,rsl,0

3 30 BU a » w
R [T sl sl
I Tmm[110 sl
s i1 Ed l
SB [(mm[12] | imm[10:5] il sl
u imm[3I:12]
U3 (X[Tmm[IG] [mofll]] w517

RISC-V Integer Base (RV32I/641/1 281, privileged, and aptional compressed extension (RVC). Reg

rd/Tsl rs2 op
fmm rdfrsl imm op
imm [2 op
imm op

fmm | i’ | imm | od op
imm sl | imm | ¥ | op
offset sl | affset op
jump target | op

xi-x31 and the pc are 32 bits

wide in RV3ZE 64 in V641, and 128 in RVI2SE (x0-0). RVGLT 28 add 10 instruciions for the wider formais. The RVI base af <30

elassic imteger RISC instractions is reguived. Every 16-bit RVC instruetion matches an existing 32-bit RV instruction. See risc.org.

Convert from Int| F 1#CVE.(W[S[D[O}.W =4, [FCVT. (]8[O} (LT}
Convert from Int Unsigned| P ~CvT.(8B|S|D|Q}. ™0 rd, pcvr. (8|s|D|Q}- (L] T}V
Convert to Int, P. «CVT.W.{H|S|D|Q} xd,rsl FCvT. (L|T)- (H]|S|D|Q}
Convert to Int "<CVT.WU. {8|S|D|Q} rd,rsl ame g =inlo
Load| 1 r’l.{' D,0} rd, ral, imm V¥ Calling Convention
Store| € .°S{W,D,Q ral,rs2, ism R ion
B) ADD. (s|D[Q) rd,rsi,rs2 X W‘m@d zero

SUBtract] ¥ "suB.{s|D|Q} rd,rsl,rs2? Caller Return address

MULtiply} _MUL.{S|D|Q} =rd,rsl,rs2 x2 Callee Stack pointer
DIVide| k I»n:v {s|pjg} rd,rsl,rs2 %3 Global pointer
Quare RooT| SQRT.{s|D|Q} rd,rsl x4 e Thread pointer
Multiply-ADD ADD. (s|D|Q) rd,rsl, rs2,n x5=7 =2 Caller Temporaries
Multiply-SUBtract] = wrMSUB.(5|D|Q) rd,rsl, rs2, x8 s0/fp Callee Saved register/frame pointer
Negative Multiply-SUBtract F |-'-csun {s|o|Q} rd,rsi, rs2,r x5 sl Callee 'Saved register

egative Multiply-ADD| X I.MMADD.{S[D|Q) rd,rsl,rs2,r 10-11
Sign Injec SIGN source _r pSouJ.{s|blg} =d,rsl,rs2
Negative SIGN source| Im {s|p|Q} rd,rsl, rs2

Caller Function arguments/return values

Xor SiGN source| “SGHJX.{S|D|Qg} rd,rsl,rs2 31 | e3-té Caller ies
M FMIN. (S|D|Q) rd,rsl,rs2 fro= Caller FP temporaries
MAXimum| F ¥ pax.is|o|g rd, rsl, rs2 £50-1 Callee FP saved registers

Caller FP arguments/return values
Caller FP arguments

Callee |FP saved registers

Caller FP temporaries

pare Float = - Be-{s|p]Q} rd,rsl, rs2
Compare Float < arLT. ($|D|Q) rd,rsl, rs2
Compare Float < :ru.{swln} rd,rsl, rs2
tion Classify Type| F wcLASs.{s|p|g} rd,rsl
“<mcsr

uration Read Status| B | rd
Read Rounding Mode| R ,<RRM rd
Read Flags| R [FRFLAGS rd

Swap Status Reg| "~ —scsr rd,rsl

Swap Rounding Mode|

Swap Flags|
Swap Rounding Mode Imm

instructions (RVI2M); 11 optional atomic instructions (RV32A); and
*5_ﬂmlmgu,mm instructions each for single-, double-, und qu:k—pruimn (RV32F, RV32D, RV32Q). The latter add registers f0-f31, whose
width matches the widest precision, and a floating-point control and status register fesr. Each larger address adds some instructions: 4 for RVM,
11 for RVA, and 6 each for RVF/D/Q. Using regex notation, | | means set, so L1D 10} is both LD and LO. See risc.org. (8/21/13 revision)

» There are 32 registers, each 32/ 64 / 128 bits long
= Named x0 to x31
= X0 is hard wired to zero
» There is a standard ‘E’ extension that uses only 16 registers (RV32E)

= |n addition one program counter (PC)
= Byte based addressing, program counter increments by 4/8/16

= For floating point operation 32 additional FP registers
= Additional Control Status Registers (CSRs)

= Encoding for up to 4'096 registers are reserved. Not all are used.

ACACES 2020 - July 2020

ing with RISC-V

RISC-V Instructions four basic types
=R register to register operations

" operations with immediate/constant values

= S/ SB operations with two source registers
= U/UJ operations with large immediate/constant value

31 25 24

funct7 rs2
imm|[11:))] funct3
imm|[11:5] rs2 rsl funct3
imm[31:12]

ACACES 2020 - July 2020

ing with RISC-V

Encoding of the instructions, main groups
= Reserved opcodes for standard extensions

= Rest of opcodes free for custom implementations
= Standard extensions will be frozen/not change in the future

mst[4:2] | 000 001 010 011 100 101 110 111

inst|[6:5] (> 320)
00| LOAD LOAD-FP | eustom-0 | MISC-MEM | OP-IMM | AUIPC OP-IMM-32 48b
01| STORE | STORE-FP | custom-1 AMO oP LUI OP-32 64b
10 [MADD MSUB NMSUB | NMADD OP-FP | reserved | custom-2/rvi28 | 48b
11 | BRANCH JALR reserved JAL SYSTEM | reserved | custom-3/rvi28 | > 80b

ACACES 2020 - July 2020

Working with RISC-V

RISC-V is a load/store architecture

*,
-/

= All operations are on internal registers
= Can not manipulate data in memory directly

» Load instructions to copy from memory to registers

= R-type or I-type instructions to operate on them

= Store instructions to copy from registers back to memory
* Branch and Jump instructions

ACACES 2020 - July 2020

ing with RISC-V

Constants (Immediates) in Instructions

= |n 32bit instructions, not possible to have 32b constants

= Constants are distributed in instructions, and then sign extended
» The Load Upper Immediate (1ui) instruction to assemble/push constants

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct? rs2 rsl funct3 rd opcode
imm|11:0] rsl funct3 rd opcode

imm[11:5] rs2 rsl funct3 imm|4:0] opcode
imm[12] | imm[10:5] rs2 rsl funct3 | imm[4:1] | imm[11] | opcode
imm[31:12] rd opcode

imm 20] imm|[10:1] imm|[19:12] rd opcode

= [nstruction types according to immediate encoding

R-type
I-type

S-type
B-type
U-type

J-type

ACACES 2020 - July 2020

ing with RISC-V

Load from memory (1d), how immediates work
1d x9, 64(x22)

imm|[11:0] rsl funct3 ; opcode

1

e +

32b memory address B [E R
= Not possible to fit a 32b address in 32b encoding directly

= Take the content in source (rs1), add the immediate (imm) to it. This is the address
= Read from this address in the memory and load into the destination (rd) register

= RISC-V tries to minimize number of instructions
» The 1d instruction seems overly complicated, but you can use this for everything

ACACES 2020 - July 2020

ing with RISC-V

Branching, how addresses come together
bne x10, x11, 2000

imm[12] | imm[10:5] rs2 rsl funct3 |imm|4:1] | imm(11] | opcode

= Similar problem, how to encode jump address in branches
= Branch on Equal (beq) and Branch on Not Equal (bne)
= They use B type operations, need two source registers

= Jumps are relative to Program Counter (PC)
» The immediate (constant) shows how far we have to jump (PC-relative addressing)
= Works addresses within £ 4096. To branch further, we need several instructions.

ACACES 2020 - July 2020

ing with RISC-V

XAXXAXXXXXXXXXaa

XXXXXXXXXXXXXXXX | Xxxxxxxxxxxbbbll

~--ﬁ¥xx XXXXXXXXXXXXXXXX | xxxxxxxxxx011111

c e XXXX | XXXXXXXXXXXXXXXX | xxxxxxxxx0111111

c e XXXX | XXXXXXXXXXXXXXXX | xxxxxnnnnlliiiidl

ceXXXX | XXXXXXXXXXXXXXXX | xxxxxd1111111111

Byte Address: base-+4 base+2 base

RISC-V Instruction Length is Encoded

= | SB of the instruction tells how long the instruction is
= Supports instructions of 16, 32, 48, 64, 80, 96, ..., 320 bit

= Allows RISC-V to have Compressed instructions

16-bit (aa # 11)

32-bit (bbb # 111)

48-bit

64-bit

(80+16*nnnn)-bit, nnnn#1111

Reserved for >320-bits

ACACES 2020 - July 2020

ing with RISC-V

Compressed Instruction extension ‘C’

= Use 16-bit instructions for common operations
= Code size reduction by 34 %
= Compressed instructions increase fetch-bandwidth
= Allow for macro-op fusion of common patterns

Total Dynamic Bytes B <8664
2.0 = ' ' ' ' T |mm ARMY7]
0 =1 ARMv8
4;“&‘ 1 RV64G
< S 0. | 1 1 RV64GCH
c o
o w
= > -
S8
SN
£N
A_JTg
EE 05 . ! : . . . _
g5
%‘-—-—
0.0
90 Y0 ‘0 o) g 95, 75, 76 6. <>
0 2 3 9 5 6 8. 02, 7 2
"OG,- é‘? "Oc - "Oo -5, -8/, /}6 };2 .
% y ¢ cr 6, m e 6.
65’/30,5 w2 7% er % %‘30“0,,7 ey

x86-64: 3.71 bytes / instruction RV64IC: 3.00 bytes / instruction

ACACES 2020 - July 2020

= RISC-V ISA tells you the architecture

= You know which instructions are supported
= How they are encoded
= \What they are supposed to do

= |t does not tell you any implementation details

= Pipeline stages, memory hierarchy, computation units, in-order or out—of order
= Everyone is free to figure out how to best implement these

= Need to come up with a micro-architecture to implement it

= Determine which standard extensions are supported, how
= Choose a micro-architecture that fits performance requirements

ACACES 2020 - July 2020

= Area = CPU Design:

= in KGE equivalent (# of simple logic = |PC (Instructions per cycle)

gates) or mm? (technology dependent) = |PC implicitly measured in commonly used
benchmarks (Coremark, Dhrystone, Specint)

= Energy Efficiency: OPs/Joule

* Frequency:

= Depends on # of gates on longest path _
= Hardware Designer

= Power: = Tries to find a good balance
= Strongly depends on the above metrics Application dependent
= Leakage: dissipated even when not = |oT and HPC have different requirements

working (Area)

= Dynamic Power: dissipated on logic
transitions (frequency and area)

= One size does not fit all

ACACES 2020 - July 2020

Working with RISC-V

RISC-V cores developed at ETH Zurich

Low Cost DSP Streaming Linux
Core Enhanced Compute capable Core
Core Core

= Zero-riscy = RISCY = Snitch = Ariane
| | = RV32-
ICMDFX

dddddd
rdata_i

addr o
rdata i

Prefetc S0P
nsn
Buffer
A
ow

g

o
X Debug Unit 1| | —DWD[_I
< A

= Two Configurations:
= Zero-riscy: RV32IMC (2,44 Coremark/MHz)

= 32 registers, hardware multiplier

= 2-stage plpellne

Instruction Mem

Data Mem

= Optimized for area

= Area:
19 kGE (Zero-riscy)
12 kGE (Micro-riscy)

= Critical path:
~ 30 logic levels

Bl

IF GPR

l— IM OpB RD
|_ LSU <
7 Decoder AP
RF OpPA AddA
AddB
P RD

= IDE N>rA DA
o "B rDB >

'Debug Interfac

J—a'A

= New name: Ibex

» LowRISC has taken over _ _ |
ZeroMicro-Riscy in 2019 ™ Micro-riscy : RV32EC (0,91 Coremark/MHz)

= 16 registers (E), software emulated multiplier

ACACES 2020 - July 2020

680
314

Instruction Mem

l

Ibex is a small and efficient, 32-bit, in-order RISC-V core with a 2-stage (or optionally 3-
stage) pipeline that implements the RV32IMCB instruction set architecture.

Since being contributed to lowRISC by ETH Ziirich, it has seen substantial investment of
development effort

ACACES 2020 - July 2020

Data Mem

2

Working with RISC-V

Roadmap of lbex

@ lowRISC

Stabilisation Perf phase 1
19Q3-19Q4 20Q1

Branch targetALU o
Third pipeline stage e
Single-cycle MUL °
IS prototype

e RISC-V specification
conformance

e Codecleanupand
refactoring
(~50% LoC changed)

e Cl&DV (riscv-dv, Google)

Randomised execution
time
Non-data-dependent
fixed execution time
Parity checks

Security hardening
phase 1 20Q2

Perf phase 2
20Q2

Finalise IS
Static branch predictor
Bitmanip ISA extension

Bus scrambling

CFI (TBD)

Shadow PMP regs
OT secure coding
guidelines conform

Security hardening
phase 2 20Q3

ACACES 2020 - July 2020

ing with RISC-V

Growth of Ibex measured with Coremark/MHz

Past Work Today Future
-v
3.19
3.09
2.92
2.55
2.43
Branch Third Pipeline Single Cycle Static Branch Bit Manipulation
Target ALU Stage Multiply Prediction ISA Extension

ACACES 2020 - July 2020

= Zero-riscy / Ibex is suitable for simple applications
= Control applications, book-keeping

= For our research we need more capable cores
= Mainly used in clusters for signal processing / machine learning applications

* Tuned for energy efficiency
= Not necessarily low power

= Make use of custom extensions

= The Xpulp extensions enhance the capabilities
= Several Xpulp extensions in discussions for ratification

ACACES 2020 - July 2020

2

Working with RISC-V

Simplified pipeline for RISCY / CV32E40P

Instruction Memory

AInstruction

PC
Generation

Address

|> Program Counter

Instruction
Read

Align
Decompress

Jumps / Branches

P Fetch / Decode ‘

Register
File
Read

Decode
Operands
Forward

Data Memory

Data Write

P Decode / Execute ‘

Data Address

Address
Generation
Unit

|>Execute | Write Back ‘

Data Read

Register

File
Write

ACACES 2020 - July 2020

= 4-stage pipeline e core Y =}
rdata i “;-C\ Lops RDE> : §
" 41 kGE | H e RIE
= Coremark/MHz 3.19 | J[®™7 &% —— [}y Hilom g
Z fl 2n B Lins || : ex >
T = |Ip| S oc —— RE EX pB RDL? WB Ia)
Includes Xpulp |£ N R 2
. o1 Debug Unit | M M giz Dotp- |
extensions | |||~ P SRRl |
LClJ - :
PN Different Opti
. . = pitreren I0NS.
= Fixed point ere ptions
' . . [| .
= Bit manipulations FPU: IE.EE 754 single precision
* Including hardware support for FDIV, FSQRT, FMAC, FMUL
= HW loops

= Privilege support:
= Supports privilege mode M and U

ACACES 2020 - July 2020

ing with RISC-V

RISC-V has space for custom instructions (X)

» There is a reserved decoding space for custom instructions
= Allows everyone to add new instructions to the core
» The address decoding space is reserved, it will not be used by future extensions

» Implementations supporting custom instructions will be compatible with standard ISA
= Code compiled for standard RISC-V will run without issues

= The user has to provide support to take advantage of the additional instructions
= Compiler that generates code for the custom instructions

= ETH Zurich regularly uses these instructions

= Great tool for exploring
» The goal is to help ratify these extensions as standards through working groups

ACACES 2020 - July 2020

ing with RISC-V

Our extensions to RISCY (with additions to GCC)

= Post-incrementing load/store instructions

= Hardware Loops (1p.start, 1p.end, 1p.count)

= ALU instructions
= Bit manipulation (count, set, clear, leading bit detection)
= Fused operations: (add/sub-shift)
* Immediate branch instructions

= Multiply Accumulate (32x32 bit and 16x16 bit)

SIMD instructions (2x16 bit or 4x8 bit) with scalar replication option
= add, min/max, dotproduct, shuffle, pack (copy), vector comparison

For 8-bit values the following can be executed in a single cycle
(pv.dotup.b)

Z =D, xK, +D, x K, + D; x K; + D, x K,

ACACES 2020 - July 2020

Qﬂ) Working with RISC-V . .
¥ RISCY ISA extensions improve performance

for (i = 0, i < 100; 1i++)
dfi] = al[i] + b[i];

Baseline Auto-incr load/store HW Loop

mv x5, 0 mv x5, 0 lp.setupi 100, Lend lp.setupi 25, Lend
mv x4, 100 mv x4, 100 1b x2, 0(x10!) lw x2, 0(x10!)
Lstart: Lstart: 1b x3, 0(x11!) lw x3, 0(x11!)

1b x2, 0(x10) 1b x2, 0(x10!) add x2, x3, x2 pv.add.b x2, x3, x2

1b x3, 0(x11) 1b x3, 0(x11!) Lend: sb x2, 0(x12!) Lend: sw x2, 0(x12!)

addi x10,x10, 1 addi x4, x4, -1

addi x11,x11, 1 add x2, x3, x2

add X2, X3, X2 sb x2, 0(x12!)

sb x2, 0(x12) bne x4, x5, Lstart

addi x4, x4, -1
addi x12,x12, 1
bne x4, x5, Lstart

11 cycles/output 8 cycles/output 5 cycles/output 1,25 cycles/o

ACACES 2020 - July 2020

ing with RISC-V

Runtime for three different applications

Number of Cycles]

€

0.2 F
0

|

I
|

ERV32IMCXpulp
B RV32IMC

HERV32EC

x1 x1

_

2D Convolution

EEMBC Coremark

Scheduler Application

ACACES 2020 - July 2020

40

35

Area [KGE]
S

ing with RISC-V

Different cores for different area budgets

40.7
9

39.

20.8

10.8

5.2

RV32IMCXpulp

27.7%

12.2%

24.7%

13.6%

12.8%

X2.2

=D

. s,
0

10.5

2.5

- register-file
- ctr-status RF —
- load-store unit

ALU N

multdiv unit

debug unit

19.7%

xX3.5 i

11.6 |
35.0%]

71 28.7%

13.4% 2.5 21.7%

RV32IMC

RV32EC

ACACES 2020 - July 2020

Different cores for diffe[ent power budgets

0.6 | | |
el] |
prefetcher-buff
0.5 0.606 Bl register-file 7
-E..g_ﬁ - 0.464 D ctr-status HF_ —
£ I load-store unit
= 0.4 - [Cldecoder+ctr! 7]
Soass | Claw _
= [|debug unit
g 0.3 - 0.298 [|muilediv unit -
Vsl
E 025 —
8 0.225
" 0.2 —
§ ais - —

RV32IMCXpulp RV32IMC RV32EC

ACACES 2020 - July 2020

ing with RISC-V

Energy Efficiency: 2D-Convolution @55MHz, 0.8V

RV32IMCXpqu'

- RV32IMC
- RV32EC

Normalized Log. Energy Consumption

ACACES 2020 - July 2020

= After the break, more advanced cores
= 64bit RISC-V core
= Discussion on performance
= \ector processing

= Tomorrow, we learn about PULP systems
= Cores alone can not do much, they need a system around
= Many core systems
= Managing Data
= Acceleration
= Actual Integrated Circuits from the PULP group

ACACES 2020 - July 2020

$

'g
L m

)
J

PULPF

| Parallel Ultra Low Power

+ » Luca Benini, Davide Rossi, Andrea Borghesi, Michele Magno, Simone
B : 4 ‘ Benatti, Francesco Conti, Francesco Beneventi, Daniele Palossi, Giuseppe
& L EPr ! = ™ Tagliavini, Antonio Pullini, Germain Haugou, Manuele Rusci, Florian Glaser,
o RLER BN DR o SHGT - o Fabio Montagna, Bjoern Forsberg, Pasquale Davide Schiavone, Alfio Di
f - MARCO = DELVET ‘m Mauro, Victor Javier Kartsch Morinigo, Tommaso Polonelli, Fabian Schuiki,
W Stefan Mach, Andreas Kurth, Florian Zaruba, Manuel Eggimann, Philipp
* _ Mayer, Marco Guermandi, Xiaying Wang, Michael Hersche, Robert Balas,
* m Antonio Mastrandrea, Matheus Cavalcante, Angelo Garofalo, Alessio
. ® Byrrello, Gianna Paulin, Georg Rutishauser, Andrea Cossettini, Luca
* = Bertaccini, Maxim Mattheeuws, Samuel Riedel, Sergei Vostrikov, Vlad
Niculescu, Hanna Mueller, Matteo Perotti, Nils Wistoff, Luca Bertaccini, Thorir
Ingulfsson, Thomas Benz, Paul Scheffler, Alessio Burello, Moritz Scherer,
- Matteo Spallanzani, Andrea Bartolini, Frank K. Gurkaynak,

and many more that we forgot to mention

: . http://pulp-platform.org , @pulp_platform

-4

& "-?h-/\-t
- [3is 8 w

-

J
»
) — =
B =
g
Ty
o, . A

N
-
TRt LR PV

o E B

B EERBN
'i.xt.gi,n.m .

&
.

S

..;.Egg%-. -
:
J

—— -y -
5 32 N1
i
.
.
o A s

e

ing with RISC-V

The extensions translate to real speed-ups

= 8-bit convolution >0 === PULP(RV32IMCXpulp)

_80
()
%70 Overall Speedup of 75x

u 10X through XPULP 860 7

4
]] U 1 ,
= Extensions bring real =50 ‘ Near-Linear \ s
speedup D40 [Speedwo |/

= Near-linear Speedup 10x Slf\?ssltllvlpcw.r.t.

= Scales well for regular (ISA does matter®)
workloads. “10

»

= Open source DNN library

as

= 75x overall gain °

1 CORE 1 CORE 2 CORES 4 CORES 8 CORES

