

PULP PLATFORM Open Source Hardware, the way it should be!

Will open source hardware solve your security issues?

Frank K. Gürkaynak, ETH Zürich

CS² - 7th Workshop on Cryptography and Security in Computing Systems, 20.01.2020 Bologna, ITALY

🔰 @pulp_platform

Will open source HW solve security issues?

Frank K. Gürkaynak | 20 Jan 2020 | 2

Seems like a short talk, what is on the menu?

- Who am I, what does the Parallel Ultra Low Power project do?
- How do we see security issues?
- How can open source HW and RISC-V help?
- What have we been doing in this field?
- A brief summary
- Shameless plug for upcoming events
 - Eurolab4HPC Industrial Session, tomorrow at 14:00
 - FOSSistanbul, 13-15 March, Istanbul

I am part of the PULP project since 2013

Luca wanted to work on NEW energy efficient architectures

- Keywords were: parallel processing, near threshold operation, energy efficiency
- Parallel Ultra Low-Power platform was born

Large group of 60 people in ETH Zurich and University of Bologna

• Working on technology, IC design, architecture, programming, and applications.

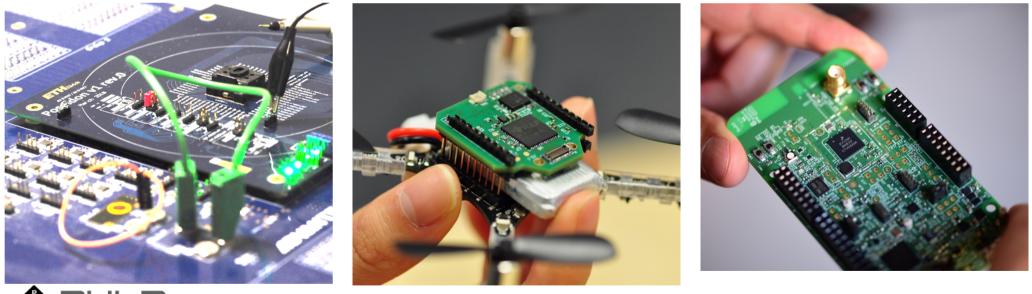
Experienced in ASIC design. We have 37 PULP ASICs taped out

- Recent chips in 22nm, 40nm and 65nm
- See the complete list at http://asic.ethz.ch

Who is behind PULP?

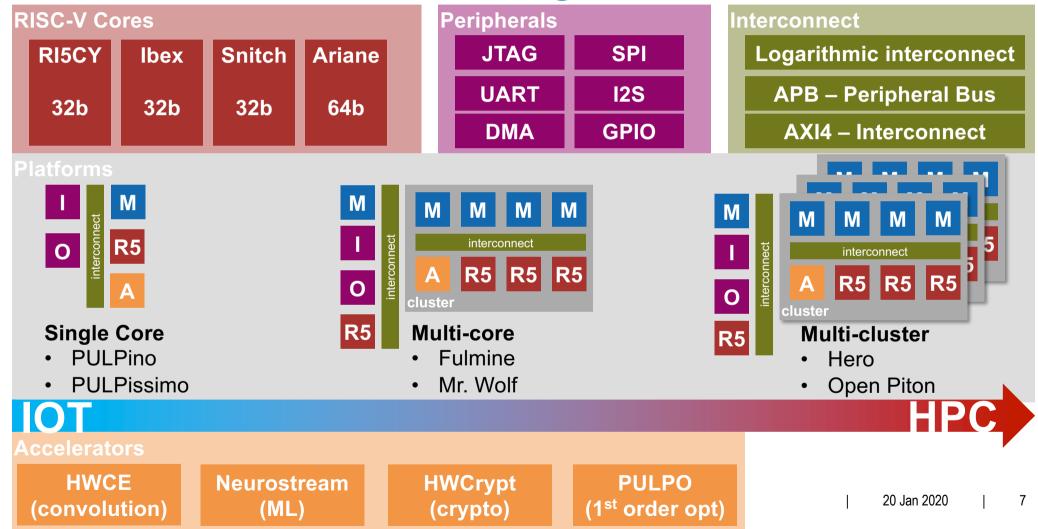
Prof. Luca Benini

In total about 60 people work on projects related to PULP in Zurich and Bologna https://pulp-platform.org/team.html


Criter Architect in STMicroelectronics (2009-2012)

Europe

20 Jan 2020 | 5


Our ASICs have different use cases

- Chips characterized on an IC tester (Poseidon 22nm)
- Research demonstrators (Nano drone with Mr. Wolf)
- Industrial uses of our cores/peripherals (open-isa.org Vega board)

PULP has released a large number of IPs

Committed to open source from day one

Our goal was to release everything (we could) as open source

- There are still discussions on what can be released (HDL source, scripts, netlist, GDS)
- PULP has been using a permissive Solderpad license since the beginning

Our first open source release was in February 2016 (PULPino)

Very simple microcontroller using a single 32-bit RISC-V core (RI5CY)

• As of now (start of 2020) we have released:

- Single core platforms: PULPino, PULPissimo
- Cluster-based multi-core platforms: OpenPULP, HERO, Open Piton + Ariane
- And a range of RISC-V cores, peripherals, accelerators and interconnect solutions

Open HW for security and safety is popular

The PULP project is a very good platform for collaboration

- It is open source, has been silicon proven and can be used for quite powerful systems
- We have many discussions with project partners about possible projects

More than half of the project ideas we discuss are on

- Securing processors against side-channel attacks
- Implementing systems with improved safety and reliability

Based on this experience:

• Allow me to make some comments on the pros and cons of OpenHW in security

Securing systems is a VERTICAL problem

Abstraction Layer	Example	Attacks	
Service	E-Voting ser	Legal challenges	
Users	Voters	Social engineering	
Application	Swiss Po Security	Bugs / backdoors in SW	
Algorithms / libraries	RSA / op issues	Weaknesses in Algorithms Privilege elevation	
Operating Systems	seL4		
Architecture	NXP - i.N at ALL	Memory/cache organization	
Microarchitecture	Dpen Levels of HV	Attacks on control flow	
Digital Electronics	Adders, g OS	Side channel leakage	
Physics	Electrons, Que um states	Environment	

Frank K. Gürkaynak | 20 Jan 2020 | 10

Solutions are needed at MULTIPLE levels

Hardware is only one part of the system

In some cases security problems are caused by multiple levels interacting with each other

Open source hardware can help provide solutions

- Many application / libraries / operating system solutions rely on open source software
- Open source hardware broadens the scope of what can be done
- But it can not solve all the issues alone

It is important to understand what it can and can not deliver

 We have seen that people have unrealistic expectations from open source hardware When these are inevitably not met, open source HW gets unfairly criticized in the end

How can open source HW help?

- Know what is really inside
- More and independent verification of blocks
- Be able to experiment without constraints
- Share the information freely
- Fairer benchmarking
- After all: Open source SW has proven useful why should open source HW be different?

Knowing how things exactly work is vital

From the "ZombieLoad" paper

From section 3.2, emphasis added for this presentation

"While we identified some necessary building blocks to observe the leakage (cf. Section 5), we **can only provide a hypothesis on why** the interaction of the building blocks leads to the observed leakage. As we could only observe data leakage on Intel CPUs, we assume that this is indeed an implementation issue (such as Meltdown) and not an issue with the underlying design (as with Spectre)."

Closed implementations hide/abstract many secrets from users

Being able to see inside and run experiments are vital for safety and security experts

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, D. Gruss, "ZombieLoad: Cross-Privilege-Boundary Data Sampling", arXiv:1905.05726

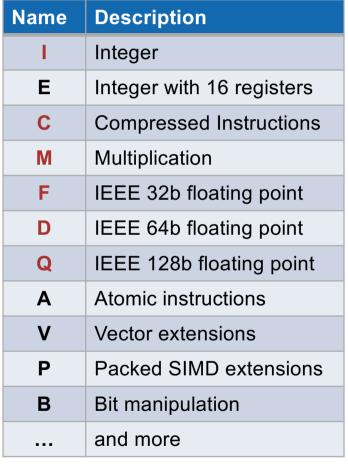
Frank K. Gürkaynak | 20 Jan 2020 | 13

It is not that cores from XYZ are insecure

- Most commercial processors have well thought out solutions
 - In most likelihood better than anything we have in open source hardware
- But a security researcher does not always have access
 - Work and insights can not be shared freely between researchers
 - Experimenting (an important part of research) is limited, you work with what is given
 - Results and changes can not be verified independently
- This is where open source hardware can help the most

Enter RISC-V to the rescue

RISC-V Foundation established in 2015


- ETH Zürich is a **founding member**
- More than 275 members

ISA is essentially a document

- Defines 32/64/128 bit architectures
- What are the instructions, what effect do they have

ISA divided into several extensions

- Working groups decide and work on the definitions
- Several are ratified, work continues on others

Frank K. Gürkaynak | 20 Jan 2020 |

15

RISC-V foundation only defines the ISA

The ISA is free, implementations can be done by anyone

- ETH Zürich specializes in efficient SystemVerilog based open source implementations
 - **RI5CY**: 32bit Micro-processor with DSP extensions (will be part of OpenHW Core-V)
 - Ibex: 32bit minimal processor (maintained by LowRISC)
 - Ariane: 64 bit Linux capable core (will be part of OpenHW Core-V)
- There are many others (SiFive, Codasip, Andes, WesternDigital, IIT-Madras,.. and more)
- Implementations can also be commercial, it is only the ISA that is open

The foundation is working on a set of compliance tools

Only foundation members are allowed to officially call their implementations RISC-V

What is so special about RISC-V

It is FREE

Everybody can build, sell, and make RISC-V cores available

It is a modern design, no historical baggage

- Some of the more common ISAs (ARM, Intel..) have been around for 20+ years Newer implementations, still need to be compatible to older designs.
- RISC-V benefited form the mistakes made by others, cleaner design
- Major design decisions have been properly motivated and explained
- Reserved space for extensions, modular
- Open standard, you can help decide how it is developed

The FREEDOM in RISC-V is implementation

You can access all ISAs without (many) restrictions

RISC-V

SW tools need to be developed so that they can generate code for that ISA

Integer Register-Register Operations

RV32I defines several arithmetic R-type operations. All operations read the rs1 and rs2 registers as source operands and write the result into register rd. The funct7 and funct3 fields select the type of operation.

31	25	24 20	0 19 13	5 14 12	11 7	6 0	
funct7		rs2	rs1	funct3	rd	opcode]
7		5	5	3	5	7	
0000000)	src2	$\operatorname{src1}$	ADD/SLT/SLTU	U dest	OP	

C2.9 ADD

Add without Carry.

Syntax

ADD{S}{cond} {Rd}, Rn, Operand2

ADD{cond} {Rd}, Rn, #imm12 ; T32, 32-bit encoding only

But most ISAs are closed. Only specific vendors can implement it

- If you want to use a core that implements an ISA, you have to license/buy it from vendor
- So open source SW (for the ISA) is possible (i.e. compilers) but building HW is not allowed

Are RISC-V processors better than XYZ?

Actual performance depends on the implementation

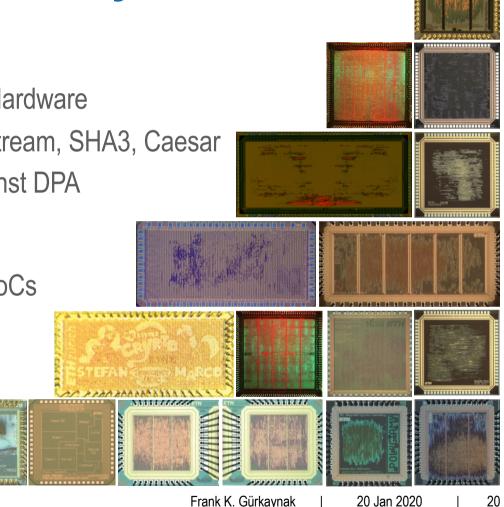
RISC-V does not specify implementation details (on purpose)

It is a modern design, should deliver comparable performance

- If implemented well, it should perform as good as other modern ISA implementations
- In our (ETH Zürich) experiments, we see no weaknesses when compared to other ISAs
- It also is not magically 2x better

High-end processor performance is not much about ISA

 Implementation details like technology capabilities, memory hierarchy, pipelining, and power management are more important.

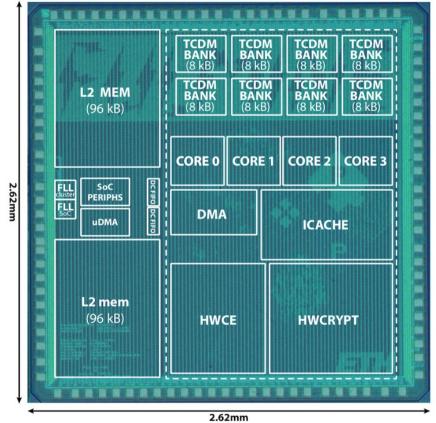

Our contributions to security research

Before PULP

- Efficient implementations of Cryptographic Hardware
- Contributions to public evaluations AES, e-stream, SHA3, Caesar
- Practical attacks and countermeasures against DPA

After PULP

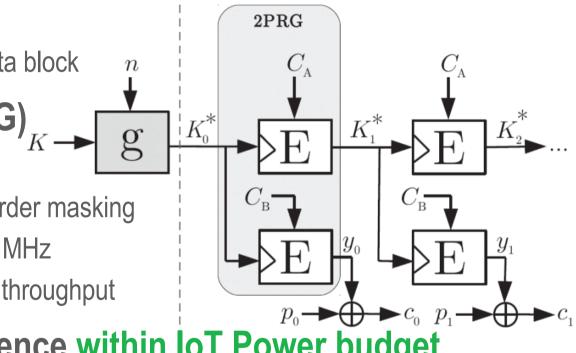
- Acceleration of Cryptographic functions in SoCs
- Control flow integrity
- Side-channel resilience
- Securing covert channels to prevent information leakage


Accelerating cryptographic functions

Key challenge: I/O bandwidth

- Not so difficult to design fast crypto HW
- Need to match the rest of the system
- Bandwidth to memory/bus the issue

Fulmine (UMC65)


- 2 TCDM ports 64bits/cycle
- AES unit (2 rounds/cycle)
 - 0.38 cpb (8 kByte block); Intel Xeon AES-NI 1.18 cpb
 - @0.8V and 84 MHz, 1.76 Gbit/s, 120 pJ per byte (chip)
- Also SHA3 unit and other accelerators

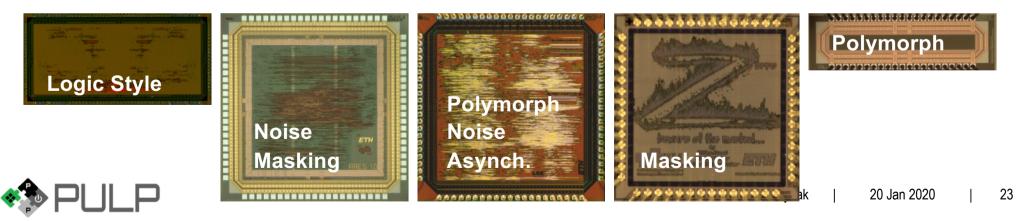
F. Conti et al., "An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor
Analytics," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp.
2481-2494, Sept. 2017.Frank K. Gürkaynak20 Jan 202021

Leakage resilient cryptography

A new key (K^{*}) is generated per data block

Reduce Attack surface

- Encryption example (2PRG)
 - E function is AES
 - **g** finite field multiplication with 1st order masking
 - Max throughput 5.29 Gbit/s @ 256 MHz
 - Needs 2x Block ciphers for same throughput
- Strong side channel resilience within IoT Power budget
 - Implemented and tested in Fulmine (last slide)


Robert Schilling, Thomas Unterluggauer, Stefan Mangard, Frank Gürkaynak, Michael Muehlberghuber, Luca Benini, "High-Speed ASIC Implementations of Leakage-Resilient Cryptography", DATE 2018

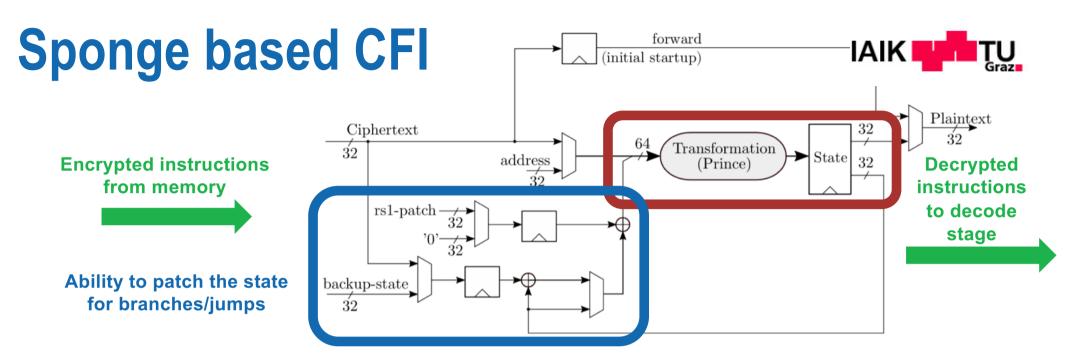
Other tricks against side channel security

- Power by far the most common side-channel attack for CMOS
- Basic approaches to protection:
 - Add noise to make measurements difficult
 - Implement masking/sharing techniques to de-correlate secrets from input data
 - Change the way the operation is organized randomly (polymorphism)
 - Use digital logic with circuit styles that have (less) data dependent consumption

Attacks against the control flow

Can be realized in both HW and SW

- A successful attack on a processor changes the order of executed instructions
- Can be used to execute malicious code or jump over security checks


HW attacks can be realized by controlling environment

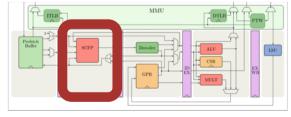
- Clock or voltage glitches
- Injecting electromagnetic pulses

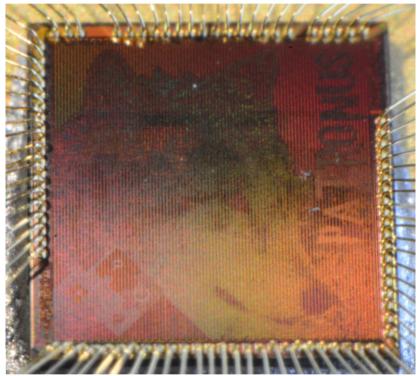
Small IoT devices more vulnerable

- They operate in potentially hostile environment
- Have less resources to withstand attacks from a capable adversary

Sponge based construction to decrypt instructions

- AEE Light with 32 bit state and 32 bit capacity in APE mode
- Used Prince for permutation allowing single cycle execution
- Attacker has to change instructions and state at the same time




Patronus: RISC-V system with CFI

- Additional pipeline stage in Ibex for decryption
 - LLVM based compilation flow
- Only 25-35% power/area overhead
- Additional instructions for branches added as instruction set extensions
- About 10% runtime overhead due to patches and additional commands
- Probability of illegal instruction trap when instruction altered
 - 91.51% within 1 cycle
 - 99.19% within 2 cycles
 - 99.95% within 3 cycles

Mario Werner, Thomas Unterluggauer, David Schaffenrath, Stefan Mangard, "Sponge-Based Control-Flow Protection for IoT devices", 2018 IEEE European Symposium on Security and Privacy

Frank K. Gürkaynak | 20 Jan 2020 |

26

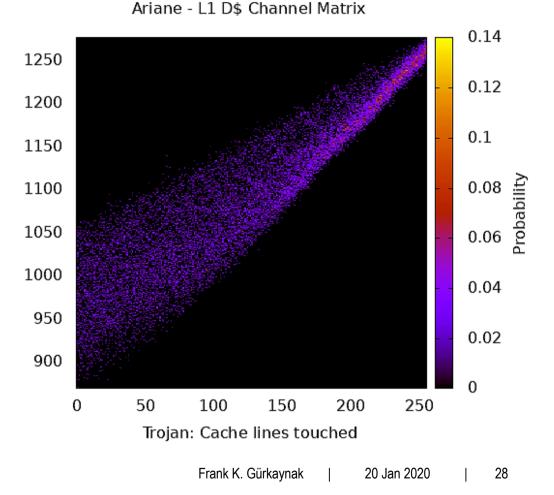
Securing covert channels

Several attacks are based on passing information between tasks

Covert channels are used to pass information between tasks

- Most channels are based on state of hardware that is retained between task switches
- Branch prediction history, caches, reorder buffers
- Attacks can be mitigated by 'securing' covert channels

Evaluation


Spy: Execution time (cycles/100)

Master thesis by Nils Wistoff

- Perform attacks running on RISC-V cores
- Investigate and evaluate efficient mitigation mechanisms

Simple processor not enough

- Most covert channels are due to performance optimizations in high performance processors
- Ariane (6 stage, in-order 64bit RISC-V)
- Working seL4 port on Ariane

How open source helped us in our projects

- Start from a working system, no need to reinvent everything
 - Our 32bit microcontrollers are quite mature, Ariane runs Linux and Sel4
- Easy to extend with accelerators and custom blocks/memories
 - Platforms designed for heterogeneous acceleration (PULPissimo, OpenPULP, HERO)
- Not limited by previous design choices
 - Do you want to have 2 additional bits for your registers, drop instructions, add new ones?
- Full source code allows you to observe/record everything
 - Not limited to which performance counters, timers are available, build add/your own
- Possible to exploit the results commercially
 PULP

Not everything is perfect, still work to do

Modern attacks exploit features of high performance processors

- Current open source offerings not at the same level of high-end commercial processors
- At the moment, no out of order, multi-issue, SMP systems within PULP ecosystem
- Designing such cores is not really our research goal

Standards of RISC-V will continue to evolve (slowly..)

Standards are discussed openly, this takes time, specifications evolve before being ratified

Providing support to all users is not our strength

- We try our best, but our main workforce are Ph.D. students that need to do research
- Get community involved in supporting what we have released so far... and...

Open Titan project

Open source Root of Trust project led by LowRISC

"OpenTitan is the first open source project building a transparent, high-quality reference design and integration guidelines for silicon root of trust (RoT) chips"

Many partners involved

ETH Zurich has contributed their 32bit RISC-V core (lbex)

OpenHW Group

OpenHW Group is a not-for-profit, global organization driven by its members and individual contributors where HW and SW designers collaborate in the development of open-source cores, related IP, tools and SW such as the CORE-V Family of cores.

OpenHW will take over and support our RI5CY and Ariane cores

Better verification, documentation, user support

Visit their booth outside to learn more

Open HW group members

Frank K. Gürkaynak | 20 Jan 2020 | 33

Open source HW is a great tool for security

Investigate, observe, change and share

- Great toolbox to test and validate ideas, develop new concepts
- Platforms with good maturity (and great price/performance)
 - Huge effort by industry supported non-profits to getting additional manpower to make it even better underway
- Permissive licensing does not put burdens on commercialization
- Access our releases through GitHub
 - https://github.com/pulp_platform

Eurolab4HPC Industrial Session: Tue 14:00

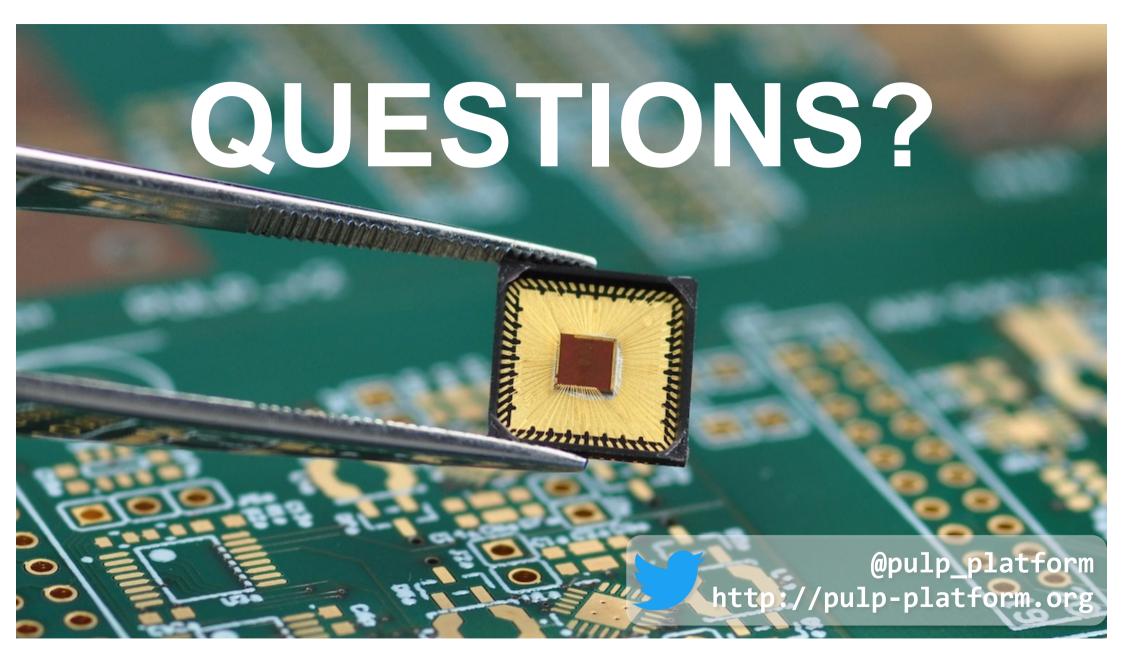
In this session our goal is to bring together major supporters of open source hardware projects within the industry and discuss what role Open Source Hardware will play in industrial applications in the coming years.

- Calista Redmond (CEO, RISC-V)
- Rick O'Connor (President, OpenHW group)
- Ted Marena (Director, Chips Alliance)
- Dominic Rizzo (Google, Open Titan, LowRISC)
- John Davis (BSC, EPI)
- Christian Fabre (CEA)

Eurolab4HPC

FOSSistanbul will bring together, enthusiasts, members of industry and academia that are working on open source hardware design, in a lively and attractive city.

With keynotes by: Luca Benini, Nele Mentens, Onur Mutlu


Register for FREE

https://fossi-foundation.org/fossistanbul/

Frank K. Gürkaynak | 20 Jan 2020 | 36

