

Energy efficient computing from Exascale to MicroWatts: The RISC-V playground

Bologna, Euroexascale Workshop

20.01.2020

¹Department of Electrical, Electronic and Information Engineering

²Integrated Systems Laboratory

Computing Continuum

Energy efficiency challenge: Exascale

HPC is now power-bound \rightarrow need 10x energy efficiency improvement every 4 years

*20MWatt supercomputer: Performance & EnOP

Copyright © European Processor Initiative 2019. EPI Tutorial/Barcelona/17-07-2019

PERFORMANCE

Energy efficiency Challenge: Extreme Edge

100mA/h 1month 1% duty cycle 10uA sleep

Flexibility needed!

asimovinstitute.org/neural-network-zoo

+ FFT, PCA, Mat-inv,...

Near-Threshold Multiprocessing on an Open ISA

Need flexibility + energy efficiency Processor + Low Vdd + Parallel + ISA extensions

Need extensible ISA, Need full access to "deep" core interfaces, need to tune pipeline, RV32IMC + New, Open Microarchitecture + ISA Extensions

Xpulp extensions

<32-bit precision → SIMD2/4 → x2,4 efficiency & memory size

Risc-V ISA is extensible by construction (great!)

- V1 Baseline RISC-V RV32IMC HW loops
- V2 Post modified Load/Store Mac
- V3 SIMD 2/4 + DotProduct + Shuffling Bit manipulation unit Lightweight fixed point

25KG → 40KG (1.6x)

RI5CY – are xPULP ISA Extensions (1.6x) worthwhile?

Need a "range of cores"

RISC-V cores

RISC-V Cores				
RI5CY	Micro	Zero	Ariane	
32b	riscy 32b	riscy 32b	64b	

Cores+IOs+Intercos+Accelerators

All these components are combined into platforms

At the extreme edge: The Mr Wolf IoT Processor

8-Processor PULP Cluster: Parallel Speed-up

Mr. Wolf Chip Results: Heterogeneous Computing Works

Technology	CMOS 40nm LP	
Chip area	10 mm ²	
VDD range	0.8V - 1.1V	
Memory Transistors	576 Kbytes	
Logic Transistors	1.8 Mgates	
Frequency Range	32 kHz – 450 MHz	
Power Range	72 μW – 153 mW	

Power Managent (DC/DC + LDO)	VDD [V]	Freq.	Power
Deep Sleep	0.8	n.a.	72 µW
Ret. Deep Sleep	0.8	n.a	76.5 - 108 mW
SoC Active	0.8 - 1.1	32 kH 450 N	0.97 - 38 mW
Cluster Active	0.8 - 1.1	32 kH= 350 N	1.6 - 153 mW

Max perf 16.4 GOp/s, Max En.Eff. 274 MOp/s/mW

Back to HPC: Kosmodrom

Need 64 bit address space, virtual memory, FP & DP, scaled technology

- 22nm FDX technology
- Two application-class RISC-V Ariane cores [1] - DP
 - RV64GCXsmallfloat
 - General purpose workloads
- Network Training Accelerator (NTX)
 [2] FP
 - Accelerates oblivious kernels:
 - Deep neural network training
 - Stencils
 - General linear algebra workloads
- 1.25 MiB of shared L2 memory
- Peripherals

Architecture: Floorplan

Architecture: Ariane RISC-V Cores

- RV64GC, 6-stage, in-order, out-of-order execute
- 16 KiB instruction cache, 32 KiB data cache
- Transprecision floating-point unit (TP-FPU) [3]
 - double-, single- and half-precision FP formats
 - Two custom formats FP16alt and FP8
 - All standard RISC-V formats as well as SIMD
- Two different implementations:
 - Ariane High Performance (AHP): tuned for high-performance applications
 - Ariane Low Power (ALP): tuned for light, single-threaded applications

Architecture: Network Training Accelerator (NTX)

- "Network Training Accelerator"
 - 32 bit float streaming co-processor (IEEE 754 compatible)
 - Custom 300 bit "wide-inside" Fused Multiply-Accumulate
 - 1.7x lower RMSE than conventional FPU
 - 1 RISC-V core ("RI5CY") and DMA
 - 8 NTX co-processors
 - 64 kB L1 scratchpad memory (comparable to 48 kB in V100)

Key ideas to increase hardware efficiency:

- Reduction of von Neumann bottleneck (load/store elision through streaming)
- Latency hiding through DMA-based double-buffering

Flexible Architecture NTX accelerated cluster

- I processor core controls 8 NTX coprocessors
- Attached to 128 kB shared TCDM via a logarithmic interconnect
- DMA engine used to transfer data (double buffering)
- Multiple clusters connected via interconnect (crossbar/NoC)

Network Training Accelerator (NTX)

Processor configures Reg IF and manages DMA double-buffering in L1 memory
 Controller issues AGU, HWL, and FPU micro-commands based on configuration
 AGUs generate address streams for data access

FMAC with extended precision + ML functions

Reads/writes data via 2 memory ports (2 operand and 1 writeback streams)

Again: specialized "deep interfaces" + Instruction extensions

NTX Power Breakdown & GPU SM Comparison

- NTX dissipates significant fraction of power in its FPU (more is better):
 - 31% of cluster
 - 14% of entire HMC
 - Recall: GPU is just around 5% [1]
- Compared to NVIDIA Volta GPU [2]:
 - Register file in GPU holds registers and thread local data
 - Each register read/write is an SRAM access
 - Register and data accesses compete for SRAM

1 Volta SM	8 NTX cl.
64 FPUs	64 FPUs
256 kB RF 128 kB L0 Cache	512 kB TCDM
32-2048 threads	8 threads

Volta Assembly	NTX Pseudocode		
LDS R2, [R0] LDS R3, [R1] FFMA R4, R2, R3, R2	FMAC accu, [AGU0], [AGU1]		
2 mem.acc. ("[…]") 8 reg. acc.	2 mem.acc. ("[…]") 0 reg.acc. (+ addr. calc for free)		
= 10 SRAM hits total	= 2 SRAM hits total		

Low-Bitwidth Floating point Formats

NaN-Boxing / Vector Packing

NaN-Boxing / Vector Packing & Insertion,

Chip Measurements Results: Core vs. Accelerator

- General purpose cores to run operating system
- Specialized workloads are off-loaded to the NTX
- NTX is 6x more energy efficient (41 vs 266 Gflop/sW) for oblivious kernels
 - Accelerator
 - FP precision
- NTX provides 18x the performance (1.5 vs 24 Gflop/s)

Results: Cell Library (Technology)

- AHP and ALP manufactured with two different cell libraries
- **AHP** tuned for **high-performance**, using fast, short-channel transistors
 - 20nm, 24nm, 28nm
 - 0.8V nominal voltage
 - Fast, single-ported SRAMs for caches
- ALP tuned for minimizing power, using slower, lower leakage cells
 - 28nm, 32nm, 36nm
 - 0.5V nominal voltage
 - Low power, single-ported, dual-supply SRAMs

- AHP: 0.85 GHz, 50.2 mW total power, 4.6 % leakage power
- ALP: 0.175 GHz, 6.2 mW total power,
 2.8 % leakage power

Results: Body Bias Voltage

- Flip-well transistors enable forward body bias (FBB)
- FBB lowers V_{TH}
- Up to 383 MHz speed-up
- FBB can be used for frequency centering at low voltage for ALP
- Extra frequency boost at high supply voltages for the AHP and NTX

Results: Supply Voltage

- **AHP** runs up to 1.6 GHz
- NTX runs up to 2 GHz (limited by the on-chip clock generation capabilities)
- ALP tuned for background-tasks at lower speeds
 - 175 MHz at 0.5V (nominal voltage)
- At high frequencies AHP becomes more efficient
- At low speeds ALP is more efficient due to reduced leakage
- AHP and ALP cover complementary operating conditions

Results: FP Precision and Energy trade-off

- Trade-off floating point precision for instruction energy
- Energy cost of FP operations is super linearly proportional to data width
- Smaller FP formats take less latency to complete
- SIMD style vectors yield higher throughput
- Improve energy to solution and time to solution up to 7.95x and 7.6x for FP8 workloads

Summary on Kosmodrom: State of the Art

- We achieve higher energyefficiency for AHP and ALP than competitive RISC-V processors (Rocket)
- Ariane contains slightly larger caches ^{SI}_{FI} (32 KiB compared to 16 KiB)
- The ALP implementation is penalized because of less mature cell libraries available to us (7k cells vs 2k cells)
- NTX achieves a 2x gain in energyefficiency compared to Tesla V100

		AHP	ALP	NTX
Nominal VDD	[V]	0.8	0.5	0.8
Frequency	[GHz]	0.85	0.175	1.55
Area	$[\mathrm{mm}^2]$	0.4	0.5	0.5
Area [*]	[MGE]	1.95	3.96 [†]	2.8
Total Power	[mW]	50.2	6.2	160.0
Leakage Power	[%]	4.6	2.8	5.5
Lkg. Power / Area (0.5 V	$[mW/mm^2]$	1.25	0.36	3
Energy/Instr.	[pJ]	24.4	22.7	3.8
Max. Eff.	[Gflop/sW]	41	44	266
Max. Perf.	[Gflop/s]	1.5	1.3	24
Area Eff.	$[Gflop/s mm^2]$	3.75	2.6	48
SLVT/LVT	[%]	26/74	83/17	60/40
FP Formats		8/16/	8/16/	32
		16alt/	16alt/	
		32/64	32/64	

	AHP [us]	ALP [us]	NTX [us]	Cortex A53 [14]	Rocket 64b[15]	Tesla V100 [§]	Xeon 8180 [§]
Node/V _{DD}	22/0.45	22/0.45	22/0.45	16/0.8	40/0.65	12/1.0	14/0.9
32 bit floats Energy Eff. [†] Area Eff. [‡]	93 [∥] 7.5	98 [∥] 5.2	266 47.1	38.7 * 8.7 *	16.7 ¶ 7.3 ¶	122 20.5	21.9 3.57
64 bit floats Energy Eff. [†] Area Eff. [‡]	41 3.75	44 2.6	_	19.4 * 4.4 *	16.7 ¶ 7.3 ¶	61 10.3	11.0 1.79
† Gflop/s W;	+ Gflop	/smm²	(node-sc	aled);	§ our estin	mates;	

* assuming NEON; ¶ no SIMD || extrapolated from 64 bit

Efficient & High performance DP: Ariane is not Enough!

Enter ARA: Open-Source RISCV Vector Engine

Memory Bandwidth

- Arithmetic intensity
 - Operations per byte: data reuse of an algorithm
 - One FMA \rightarrow two operations
- Memory-boundness and compute-boundness
- Ara targets 0.5 DP-FLOP/B
 - Memory bandwidth scales with the number of physical lanes

Arithmetic intensity [DP-FLOP/B]

RISC-V Vector Extension

- RISC-V "V" Extension
 - Cray-like vector processing, opposed to packed-SIMD

- Ara is based on the version 0.5
 - Work is being done to update it to the latest version
 - Open-source in 2020 (Q1)

Ara main datapath elements

- ALU, MUL and FPU
- Transprecision functional units
 - Throughput of 64 bit per cycle
 - Packed-SIMD approach
- FPU
 - FP64, FP32, FP16, bfloat16
 - Independent pipelines for each data type
 - Each with a different latency

Vector Lane: base computational unit

- Per-lane Vector Register File
 - 8 x 1RW SRAM banks
 - Functional units only access their own section of the VRF
 - Requires an arbiter (banking conflicts)
- Operand queues
 - Hide latency due to banking conflicts on the VRF
 - One FIFO per operand per datapath unit: 10 x 64b queues
 - Similar queues for output operands

Ara with N identical vector lanes

- Instruction forked from Ariane's issue stage
 - Instructions are issued nonspeculatively
 - Bookkeeping by the sequencer
- Load/Store and Slide Units access all the VRF
 - Connected to each lane
 - Scalability issue
- W = 32.N bits wide memory interface
 - Keep Ara performance per bandwidth ratio at 0.5 DP-FLOP/B

Matrix Multiplication on ARA

• DP-MATMUL

- *n* x *n* double-precision matrix multiplication
- $C \leftarrow A \cdot B + C$
- 32n² bytes of memory transfers and 2n³ operations
 - *n/16* DP-FLOP/B
 - Compute-bound in Ara for n > 8

Functional unit's utilization for a 16x16 DP-MATMUL

Up to 98% Efficiency on *nxn* DP-MATMUL

Up to 98% Efficiency on nxn DP-MATMUL (always?)

- Standard algorithm (row times column + reduction) is slow
 - Highly sequential
- Use a vector of reductions instead

- Standard algorithm (row times column + reduction) is slow
 - Highly sequential
- Use a vector of reductions instead

• Standard algorithm (row times column + reduction) is slow

- Highly sequential
- Use a vector of reductions instead

- Load row *i* of matrix B into vB
- for (int *j* = 0; *j* < *n*; *j*++)
 - Load element A[j, i]
 - Broadcast it into vA
 - $vC \leftarrow vA \cdot vB + vC$

vld vB, 0(addrB)

- (Unrolled loop)
 - Id t0, 0(addrA)
 - addi addrA, addrA, 8
 - vins vA, t0, zero
 - vmadd vC, vA, vB, vC
 - Id t0, 0(addrA)
 - addi addrA, addrA, 8
 - vins vA, t0, zero
 - vmadd vC, vA, vB, vC

Issue rate performance limitation

- vmadds are issued at best every four cycles
 - Since Ariane is single-issue
- If the vector MACs take less than four cycles to execute, the FPUs starve waiting for instructions
 - Von Neumann Bottleneck
- This translates to a boundary in the roofline plot

Ara: 4 lanes GF 22FDX 1.25 GHz implementation

(TT, 0.80V, 25°C)

Ara: Figures of Merit

Area breakdown

- Clock frequency
 - 1.25 GHz (nominal), 0.92 GHz (worst condition)
 - 40 gate delays
- Area: 3400 kGE
 - 0.68 mm²
- 256 x 256 MATMUL
 - Performance: 9.8 DP-GFLOPS
 - Power: 259 mW
 - Efficiency: 38 DP-GFLOPS/W
 - ~2.5X better than Ariane on same benchmark

Ara: Scalability

- Each lane is *almost* independent
 - Contains part of the VRF and its functional units
- Scalability limitations
 - VLSU and SLDU: need to communicate to all banks
- Instance with 16 lanes:
 - 1.04 GHz (nom.), 0.78 GHz (w)
 - 10.7 MGE (2.13mm²)
 - 32.4 DP-GFLOPS
 - 40.8 DP-GFLOPS/W

16 ARAs give you 1TFLOP at 12W - NOT BAD!

OpenPiton+Ariane

If you are really passionate about cache coherent "scalable" machines...

- New write-through cache subsystem with invalidations and the TRI interface
- LR/SC in L1.5 cache
- Fetch-and-op in L2 cache
- RISC-V Debug
- RISC-V Peripherals

Note: ARA plugs in nicely at the L1 interface!

Configurability Options

Component	Configurability Options			
Cores (per chip)	Up to 65,536			
Cores (per system)	Up to 500 million			
Core Type	OpenSPARC T1	Ariane 64 bit RISC-V		
Threads per Core	1/2/4	1		
Floating-Point Unit	FP64, FP32	FP64, FP32 , FP16, FP8, BFLOAT16		
TLBs	8/16/32/64 entries	Number of entries (16 entries)		
L1 I-Cache	Number of Sets, Ways (16kB, 4-way)			
L1 D-Cache	Number of Sets, Ways (8kB, 4-way)			
L1.5 Cache	Number of Sets, Ways (8kB, 4-way)			
L2 Cache	Number of Sets, Ways (64kB, 4-way)			
Intra-chip Topologies	2D Mesh, Crossbar			
Inter-chip Topologies	2D Mesh, 3D Mesh, Crossbar, Butterfly Network			
Bootloading	SD/SDHC Card, UART, RISC-V JTAG Debug			

FPGA Prototyping Platforms

Available:

- Digilent Genesys2
 - \$999 (\$600 academic)
 - 1-2 cores at 66MHz
- Xilinx VC707
 - = \$3500
 - 1-4 cores at 60MHz
- Digilent Nexys Video
 - \$500 (\$250 academic)
 - 1 core at 30MHz

In progress:

- Xilinx VCU118, BittWare XUPP3R
 - \$7000-8000
 - >100MHz
- Amazon AWS F1
 - Rent by the hour

A Computing Ecosystem Perspective

This is way too much for a university (or two)!

Academic Open-Source \rightarrow Industrial Open source

Rick O'Connor (OpenHW CEO, former RISC-V foundation director)

- OpenHW Group is a not-for-profit, global organization (EU,NA,Asia) driven by its members and individual contributors where HW and SW designers collaborate in the development of open-source cores, related IP, tools and SW such as the CORE-V Family of cores.
- OpenHW Group provides an infrastructure for hosting high quality open-source HW developments in line with industry best practices.

OpenHW Group Ecosystem

A Vertical, Application-focused Open-Platform Approach

OpenTitan

More transparent, trustworthy, and secure RoT chip design

OpenTitan is the first open source silicon project building a transparent, high-quality reference design for silicon root of trust (RoT) chips.

open**titan**

Western Digital.

Founding partners

lowRISC	ETH zürich	G+D Mobile Security
<u> </u>		

nuvoton

Google

Open HW enables a New Level of Openness in Security

Transparent: Open implementation

- Transparency at the bottom; lower than any existing RoT solutions
- Transparency enables the community to proactively audit, evaluate, & improve the design
- Engineering: reference firmware, register-transfer level (RTL), design verification (DV), and integration guidelines

Feel the momentum!

Ibex RISC-V core, flash interface, communications ports, cryptography accelerators, and more.

400

Vibrant repository

HPC Vertical: The European Processor Initiative

SURF S

SARA

Rolls-Royce

Europe Needs its own Processors

- Processors now control almost every aspect of our lives
- Security (back doors etc.)
- Possible future restrictions on exports to EU due to increasing protectionism
- A competitive EU supply chain for HPC technologies will create jobs and growth in Europe
- Sovereignty (data, economical, embargo)

 High-performance RISC-V based accelerator

Atos

JÜLICH Semidynamic^s

UNIVERSITÀ DI PISA

GENCI

(infineon

COMPUTER

BSC Superc

💹 Fraunhofer

cea

COLI

- Computing platform for autonomous cars
- Will also target the AI, Big Data and other markets in order to be economically sustainable

First Generation EPI chips

Scalar Core + STX units based on PULP!

European Processor

epi

Initiative

