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Today’s TinyML Application Landscape
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Towards Multi-modal TinyML 

• Today’s TinyML is mainly a compression tool

• Extract and transmit compressed information

• Sensor control and actuation logic is hand-crafted

• Efficient and effective sensor control is hard

• Dynamic noise conditions

• Multi-modal dependencies – your audio input might affect your camera control

• Need to close the on-device control loop

• Using multi-modal, context-aware models
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The TinyML Compiler Gap

• Multi-modal models trend towards foundation models (FMs)

• Large transformer models (Billions of parameters)

• Transformer models are good at multi-modal input processing

• Small Language Models (SLMs) show promise as application-specific FMs

• TinyML uses heterogeneous MCUs

• Software-managed caches, few MBs of memory

• Application-specific accelerators

• No turnkey solution for “truly TinyML” heterogeneous MCUs 

• Options for application-scale devices (PCs, Servers, …)

• MCU-scale toolchains come with vendor-lock or deployment limitations
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Motivation & Contribution

• How do we close the TinyML Compiler Gap for small FMs?

• We introduce Deeploy, a bottom-up DNN compiler for heterogeneous MCUs

• Novel tiling & allocation algorithm implements spill-free network execution

• Vendor-agnostic backend, with extensible expert-optimized low-level kernels

• Deeploy achieves SoA results on the MLPerf Tiny benchmark

• Deployed an SLM on Siracusa, a heterogeneous TinyML MCU

• Achieving 340 Tokens/sec @ 490 uJ/Token

• Using on-chip memory only
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An End-to-end Edge AI Stack
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Deeploy’s Frontend – Engine-aware lowering

• Graph lowering is platform-dependent

• Taking into account engine mapping options

• Graph remains fully ONNX compliant

• Nodes are matched with low-level kernels

• Kernel libraries like CMSIS-NN, PULP-NN are supported

• Custom kernels may be added as well

• Execution schedule is based on heuristics

• Optionally defined by the user

• How do we manage on-chip memory?
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Deeploy’s Midend – Tiling & Memory Allocation
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Target Constraints:

Constrain partial inputs to work 
with HW target

Express tiling constraints in a single Integer Linear Program (ILP)

Core Idea: Control on-chip memory use

Operator Constraints:

Constrain partial inputs
to produce valid partial outputs

Symbolic Buffer Sizes

Core Idea: Schedule allocation offline to fit into on-chip memory

Symbolic Memory Load

Solve resulting ILP for joint tiling & allocation solution!

< Available On-Chip Memory

Symbolically calculate the maximum memory load



Deeploy’s Midend – Optimizing Memory Allocation
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Static allocation guarantees spill-free network execution

Memory cap



Deeploy Backend – Vendor agnostic code generation

• Backend generates low-level C Code

• Tiling & memory allocation from midend

• Using operator mapping from frontend

• Deeploy provides code generation primitives

• Device offloading

• Double-buffered DMA transfers

• Fork-synch based multi-core programming

• Bottom-up code generation accelerates reuse

• Bring your own expert-optimized kernel templates!
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Putting Deeploy into Practice - Siracusa
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• Target Platform: Siracusa

• 8-core PULP Cluster

• 2 MiB L2 Memory

• 256 KiB L1 Memory

• N-EUREKA CNN Accelerator

• 3x3 Convolutions

• 1x1 Convolutions 

• Shared L1 access

• Neural Memory Subsystem

• Weight memory for N-EUREKA

MLPerf Tiny Benchmark

SoA Performance with cluster only

Bottom-up design allows us to leverage N-EUREKA seemlessly!



Towards Small Foundation Models for TinyML
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• Reuse N-EUREKA’s 1x1 convolution to map linear layers

• Linear weights are kept untiled in weight memory

• Run all other operators on the cluster
340 Tokens per Second

490 µJ per Token

“MicroLlama” – 4.2 MParameter Llama model

Measured in-silicon Performance



Comparing TinyML compilers
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• Deeploy achieves SoA performance 

• Benchmark TinyML workloads

• Emerging Small Foundation Models

• Deeploy supports your MCU platform

• ARM, RISC-V, Accelerators, emerging memories, NUMA, …

Embedded Tool Name
Supports 

Transformers?
Supports 

Accelerators?
Supports memory-aware 

Tiling?
Open and 

extensible?

TensorFlow Lite

STM Cube AI

GreenWaves NNTool

Dory

Deeploy



The Last Word

• Deeploy allows leveraging heterogeneous MCUs for multimodal AI

• Midend generates fully static memory allocation, including tiling

• Front- and Backend capable of exploiting dedicated accelerators

• Demonstrated fully on-chip SLM inference on an MCU

• Running entirely bare-metal, leveraging expert-optimized kernels

• 340 Tokens/sec @ 490 uJ/Token

• Everything’s open-source!

• Quantlib for DNN Training & Quantization

• Deeploy

• PULP-NN & PULP-NNX kernel libraries

• GVSoC Siracusa platform simulator

30.09.2024 14

github.com/pulp-platform/deeploy
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