

Are open source digital design flows ready for mainstream?

Frank K. Gürkaynak
Microelectronics Design Center
ETH Zürich, SWITZERLAND
kgf@iis.ee.ethz.ch

9-12 SEPTEMBER
SSERCE
2024

- Project supported by Google with Skywater
 - Resulted in hundreds of tape-outs
 - Reached to thousands of people
- □ Tiny TapeOuts add 100s of projects onto one tile of the Skywater modules
 - 238 chips on Tiny Tapeout 6
 - https://tinytapeout.com/runs/tt06/
- Complexity is limited
 - Excellent for teaching
 - But can it be used for more
 - How far can we push it?

Say Hi to Basilisk!

- Completely open SoC design
 - 3.5x timing &1.6x area improvement over existing open flows
 - Approaching QoR of commercial EDA
 - Complex design done in 6 months
- Key Metrics:
 - IHP's open 130nm node
 - 60 MHz TT backend (51 logic levels)
 - 1.08 MGE logic, 60% density
 - 24 SRAM macros (114 KiB)
 - 6.25 x 5.5mm (34mm²)

Simplified IC design flow

Fabs do not disclose PDK information

Three aspects of open source HW

Design

- RTL / HDL descriptions (quite common)
- Schematics / Physical Design (may have dependencies to technology information)
- ☐ **Tools** (EDA)
 - Front-end tools (Synthesis)
 - Back-end tools (Placement and Routing)
 - Verification tools (Simulation)
- Manufacturing (PDK)
 - Design rules for manufacturing (separation, minimum width of metals)
 - Layer stack informartion for parasitics (thickness, dielectric constants..)
 - Device models (SPICE parameters) for simulation

Three aspects are largely independent states

- Open source contributions can use commercial EDA and closed PDKs
 - PULP Team has been working on open source HW design for 10+ years
- ☐ Open source EDA tools work just as well on closed PDKs
 - The tools are actually agnostic to the process technology (or the design)
 - Access to the technology files makes adaptations to the flow is possible
- Open source PDKs can be used with commercial tools
 - The manufacturer receives a GDS2, does not really care how it was designed.

We need all three aspects together for end-to-end open-source ICs

A modern SoC is quite complex

User-Space Software

Kernel-Space Software

HETEROGENEOUS **APPLICATION**

ACCELERATED KERNEL

VIRTUAL MEM MANAGEMENT LIBRARY

HOST DOMAIN

Mem

Driver

AXI interconnect

I/O

Sensors

Hardware

Innovation is only in part of the SoC

User-Space HETEROGENEOUS **ACCELERATED Software APPLICATION KERNEL VIRTUAL MEM MANAGEMENT LIBRARY Kernel-Space** Driver **Software** HOST DOMAIN **PULP CLUSTER** RISC-V L1 SPM **MMU Open-source silicon-proven SoC template helps** concentrate work where it counts RV HW **DMA** ACC Sensors

- Multi-million gate design
- 64-bit RISC-V Core
 - Complete Linux-capable SoC
 - Simple "Raspberry Pi"
- Rich Peripherals
 - Includes an open USB 1.1 host
- Open-source DRAM interface
 - Digital-only interface
- Silicon-proven
 - Multiple successful tapeouts with commercial EDA

https://github.com/pulp-platform/cheshire

Open-Source Tool-Flow of Basilisk

- Source management and pre-processing
 - Manage SystemVerilog codebase
 - Convert and simplify to Verilog
- Synthesis
 - Yosys from RTL to standard-cell netlist
 - Yosys uses ABC for high-effort logic optimization and technology mapping
- Backend
 - OpenROAD tool suite
 - Collection of leading-edge research tools

- Basilisk uses an 'almost completely open' flow
 - With a safety net: We also have commercial tools to fall back on
 - Some aspects, we ended up using commercial versions
 - □ DRC, LVS, backannotated gate-level simulation
 - □ I/O Cells in Basilisk are not the open-sourced versions
- □ There is a difference between available and works really well
 - The quality of results can use more improvement (at all levels)
 - Some tools would need to be re-designed to scale to larger designs
 - ☐ Runtime and resource usage could be improved

Still work to be done to cover all aspects of the flow!

What is in a process design kit?

Transistor Models

** PTM-MG 20nm HSPICE Model Card for HP ** Nominal VDD=0.9V .model nfet nmos level = 72 = 1e-008general +x1+11c = 0

You can not learn the secrets of how a fab manufactures chips through the information in the PDK!!

PDK information is not that "Secret"

- \square Guess what: the gate length of a transistor in a 65nm technology is: 65nm !!
 - Many of the design rules are trivial or expected from publicly available material
- □ Even Youtubers have the means to 'delayer' any given chip
 - For example "14nm and 7nm are NOT what you think it is" https://www.youtube.com/watch?v=1kQUXpZpLXI
 - The stack, materials, their dimensions can be obtained without much effort
- You can manufacture a chip with transistors and characterize it yourself
 - Getting transistor parameters of a given technology is not 'difficult'

No manufacturing details disclosed by PDK!

Access to PDK is essential of OSHW

- □ The PDK holds the key to too many things
 - Physical layouts
 - Electrical characteristics
 - Parasitics
- ☐ This would prevent making hard IPs available openly
 - Standard cell libraries, memories, I/Os, data converters.
- Most PPA numbers would stay obfuscated
 - It is not like we can not publish any PPAs on commercial technologies
 - Can not discuss specific issues or highlight performance bottlenecks
- We also could not improve parts of the PDK
 - Only the manufacturer is normally able to make changes
 - Support for new tools, changes, updates, fixes

- A successful design requires a number of things that are part of the PDK
 - But do not necessarily come as part of a PDK
 - More work is needed to provide them
- Design enablement IPs
 - Standard Cells, Memories/Memory generators, I/O cells
- □ Design flow issues
 - Efficient scripts, templates to realize designs in this flow.
 - Includes also simple things like fixing antenna violations to metal filling
- Analog IPs
 - Data converters, Serial I/Os, Memory controllers, PHYs for certain standards, Clocking

We need work to provide companion pieces to PDKs

More Open PDKs are needed

- We have access to three open PDKs at the moment
 - Skywater 130nm
 - Globalfoundries 180 (500nm high-voltage flavor of their 180nm node)
 - IHP 130nm
- ☐ State of the Art from 2000-2004
 - Many exciting designs possible
- We need more
 - For more innovation: higher volume, faster turn-around, frequent MPWs
 - For more capabilities: Access to newer nodes

An Open PDK in the 65-28nm would be a game changer!

- □ Design
 - Already quite established
 - Should also include hard-IP with open PDKs
- ☐ **Tools** (EDA)
 - Allows substantial designs to be completed
 - More work needed
- Manufacturing (PDK)
 - Need more volume, newer technologies

Exciting times ahead

- Open source fuels our research
 - Faster/easier collaboration
 - Verifiable results
 - Research opportunities at all levels
 - Great for education

- □ Follow us
 - https://pulp-platform.org
 - https://github.com/pulp-platform
 - https://x.com/pulp_platform

