

A 1.15 TOPS/W, 16-Cores Parallel Ultra-Low Power Cluster with 2b-to-32b Fully Flexible Bit-Precision and Vector Lockstep Execution Mode

<u>A. Garofalo</u>, G. Ottavi, A. Di Mauro, F. Conti, L. Benini, D. Rossi DEI University of Bologna, Italy angelo.garofalo@unibo.it

September 6-9, 2021

Introduction & Motivation

- Dustin Architecture Overview
 - Tunable Mixed-Precision Computation
 - Vector Lockstep Execution Mode
- □ Chip Results Summary
- Comparison with the State-of-the-art
 Conclusion

Introduction & Motivation

Extreme Edge AI and TinyML

- Low latency and network load compared to cloudML;
- Eases privacy concerns

Challenges

- High computational and memory requirements (ML + DL);
- Limited resources on IoT End-Nodes (microcontrollers).

Opportunities

- Reduce DL/ML model size;
- Low-Bitwidth Mixed-Precision computation.
- Reduce instruction fetch and decode overhead exploiting data-parallel execution

Quantized Neural Networks (QNNs)

Quantization Method	Top1 Accura	асу	Weight Memory Footprint		
Full-Precision	70.9%		16.27 MB	11	
INT-8	70.1%	0.8%	4.06 MB	4 x	
INT-4	66.46%	4.4%	2.35 MB	• 7x	
Mixed-Precision	68%	*2.9%	2.09 MB	♦ 8x	

Courtesy of Rusci M. «Example on MobilenetV1_224_1.0.»C

Mixed-precision Quantized Neural Networks (QNNs) are the natural target for execution on constrained edge platforms.

(*) Bianco, Simone, Remi Cadene, Luigi Celona, and Paolo Napoletano. "Benchmark analysis of representative deep neural network architectures." IEEE Access 6 (2018): 64270-64277.

Edge AI Computing Platforms

	ASICs	FPGAs	MCUs
Throughput [Gop/s]	1 K – 50 K	10 - 200	0.1 – 2
Energy Efficiency [Gop/s/W]	10 K – 100 K	1 - 10	1 – 50
Flexibility	Low	Medium	High
Cost	High	Medium	Low

□ IoT End-Nodes scenario:

- Must be inexpensive and software programmable (MCUs);
- SoA ISAs (RISCV (*), ARM (**)) support only integer uniform arithmetic (with SIMD);
- Huge overhead to perform mixed-precision computation for data casting and packing;

This Work:

- Low-Power IoT End-Node with a fully programmable RISCV accelerator cluster;
- Mixed precision 2b-to-32b SIMD instructions in the ISA of the cores;
- Vector Lockstep Exec. Mode to boost the Efficiency on data-parallel DL/ML algorithms.

(*) Garofalo et al. "XpulpNN: Enabling Energy Efficient and Flexible Inference of Quantized Neural Networks on RISC-V based IoT End Nodes." IEEE Transactions on Emerging Topics in Computing (2021). 5 of 23

(**) D. E. Joseph Yiu, "Introduction to the arm cortex-m55 processor. : <u>https://pages.arm.com/cortex-m55-introduction.html</u>," Feb. 2020.

Introduction & Motivation Dustin Architecture Overview Tunable Mixed-Precision Computation

- Vector Lockstep Execution Mode
- □ Chip Results Summary
- Comparison with the State-of-the-art
 Conclusion

Dustin: Architecture Overview

The SoC is a Low-Power IoT End-Node with AI edge computing capabilities

- □ Microcontroller
 - □ 1 RISCV core
 - □ 112 kB of L2 memory
 - Rich sets of peripherals (UART, I2C, CAM itf..)
 - □ JTAG (Debug), GPIOs, ROM
 - □ Interrupt Controller
- Parallel cluster accelerator of fully programmable RISC-V cores

Dustin: Cluster

□ Accelerator Cluster

- 16 RI5CY (*) cores augmented with 2b-to-32b SIMD instructions;
- Software Configurable Vector Lockstep Execution Mode (VLEM);
- Single-cycle latency TCDM interco.
 leveraging a req/gnt protocol,
 word-level interleaved scheme.
- 128 kB of Shared Tightly-Coupled L1 Data Memory;
- □ Hierarchical Instruction Cache;
- \Box High performance DMA (L2 <-> L1);
- Event Unit supporting efficient synchronization among the cores;

Core Enhancements

- □ **RI5CY**: 4-stage in order single-issue pipeline
 - **ISA**: RV32IMCXpulpV2
 - XpulpV2 extensions:
 - HW Loops;
 - Post-Increment LD/ST;
 - 16-/8-bit SIMD insns;
 - Bit Manip. insns.
 - Goal
 - HW support for mixedprecision SIMD instructions;
- □ Challenge
 - Enormous number of instructions to be encoded in the ISA;
- Solution
 - Dynamic Bit-Scalable Precision

Extended Dot-Product Unit

Mixed-Precision Controller

Mixed-Precision operations require a controller: selection of the correct subword of the lowest precision operand (Vector B) to be used in current SIMD op.

I The controller is programmed by control status registers (CSRs).

Dynamic Bit-Scalable Execution

Standard Instructions						Virtua	/irtual Mistuationstructions			
pv:dotsp.h pv:dotsp.b pv:dotsp.n pv:dotsp.c pv:dotsp.m4x2 pv:dotsp.m8x2 pv:dotsp.m8x4 pv:dotsp.m16x8 pv:dotsp.m16x8 pv:dotsp.m16x2 pv:dotsp.sc.h pv:dotsp.sc.b pv:dotsp.sc.c pv:dotsp.sc.n	pv.dotup.h pv.dotup.b pv.dotup.n pv.dotup.c pv.dotup.m8x2 pv.dotup.m8x2 pv.dotup.m8x4 pv.dotup.m16x8 pv.dotup.m16x4 pv.dotup.m16x2 pv.dotup.sc.h pv.dotup.sc.c pv.dotup.sc.n	pv.dotusp.h pv.dotusp.b pv.dotusp.n pv.dotusp.c pv.dotusp.m4x2 pv.dotusp.m8x2 pv.dotusp.m8x4 pv.dotusp.m16x8 pv.dotusp.m16x4 pv.dotusp.m16x2 pv.dotusp.sc.h pv.dotusp.sc.b pv.dotusp.sc.c pv.dotusp.sc.n	pv.sdotsp.h pv.sdotsp.b pv.sdotsp.n pv.sdotsp.c pv.sdotsp.m4x2 pv.sdotsp.m8x2 pv.sdotsp.m8x4 pv.sdotsp.m16x8 pv.sdotsp.m16x4 pv.sdotsp.m16x2 pv.sdotsp.sc.h pv.sdotsp.sc.b pv.sdotsp.sc.c pv.sdotsp.sc.c	pv.sdotup.h pv.sdotup.b pv.sdotup.n pv.sdotup.c pv.sdotup.m4x2 pv.sdotup.m8x2 pv.sdotup.m8x4 pv.sdotup.m16x8 pv.sdotup.m16x4 pv.sdotup.m16x2 pv.sdotup.sc.h pv.sdotup.sc.b pv.sdotup.sc.c pv.sdotup.sc.n	pv.sdotusp.h pv.sdotusp.b pv.sdotusp.n pv.sdotusp.c pv.sdotusp.m4x2 pv.sdotusp.m8x2 pv.sdotusp.m8x4 pv.sdotusp.m16x8 pv.sdotusp.m16x4 pv.sdotusp.m16x2 pv.sdotusp.sc.h pv.sdotusp.sc.b pv.sdotusp.sc.c pv.sdotusp.sc.n]	No e Reus	pv.dotsp.v pv.dotsp.sc .v pv.dotsp.sci .v pv.dotup .v pv.dotup.sc .v pv.dotup.sci . pv.dotusp .v pv.dotusp.sci	pv.sdotsp .vpv.sdotsp.sc .vvpv.sdotsp.sci .vvpv.sdotup .vvpv.sdotup.sc .vvpv.sdotup.sci .vpv.sdotusp .vvpv.sdotusp .v.vpv.sdotusp.sc .v.vpv.sdotusp.sc .v	ed at ID insn ats Dde
pv.dotsp.sc.m4x2 pv.dotsp.sc.m4x2 pv.dotsp.sc.m8x2 pv.dotsp.sc.m8x4 pv.dotsp.sc.m16x8 pv.dotsp.sc.m16x4 pv.dotsp.sc.m16x2 pv.dotsp.sci.h pv.dotsp.sci.c pv.dotsp.sci.c pv.dotsp.sci.n pv.dotsp.sci.m4x2 pv.dotsp.sci.m8x2 pv.dotsp.sci.m8x4 pv.dotsp.sci.m16x8 pv.dotsp.sci.m16x4 pv.dotsp.sci.m16x2	pv.dotup.sc.m4x2 pv.dotup.sc.m8x2 pv.dotup.sc.m8x4 pv.dotup.sc.m16x8 pv.dotup.sc.m16x4 pv.dotup.sc.m16x2 pv.dotup.sci.h pv.dotup.sci.c pv.dotup.sci.n pv.dotup.sci.m8x2 pv.dotup.sci.m8x2 pv.dotup.sci.m8x4 pv.dotup.sci.m16x8 pv.dotup.sci.m16x4 pv.dotup.sci.m16x2	pv.dotusp.sc.m4x2 pv.dotusp.sc.m8x2 pv.dotusp.sc.m8x4 pv.dotusp.sc.m16x8 pv.dotusp.sc.m16x4 pv.dotusp.sc.m16x2 pv.dotusp.sci.h pv.dotusp.sci.c pv.dotusp.sci.n pv.dotusp.sci.m4x2 pv.dotusp.sci.m8x2 pv.dotusp.sci.m8x4 pv.dotusp.sci.m16x8 pv.dotusp.sci.m16x4 pv.dotusp.sci.m16x2	pv.sdotsp.sc.m4x2 pv.sdotsp.sc.m8x2 pv.sdotsp.sc.m8x4 pv.sdotsp.sc.m16x8 pv.sdotsp.sc.m16x4 pv.sdotsp.sc.m16x2 pv.sdotsp.sci.h pv.sdotsp.sci.c pv.sdotsp.sci.c pv.sdotsp.sci.n pv.sdotsp.sci.m4x2 pv.sdotsp.sci.m8x2 pv.sdotsp.sci.m8x4 pv.sdotsp.sci.m16x8 pv.sdotsp.sci.m16x4 pv.sdotsp.sci.m16x2	pv.sdotup.sc.m4x2 pv.sdotup.sc.m8x2 pv.sdotup.sc.m8x4 pv.sdotup.sc.m16x8 pv.sdotup.sc.m16x4 pv.sdotup.sc.i.6x2 pv.sdotup.sci.b pv.sdotup.sci.c pv.sdotup.sci.n pv.sdotup.sci.m4x2 pv.sdotup.sci.m8x2 pv.sdotup.sci.m8x4 pv.sdotup.sci.m16x8 pv.sdotup.sci.m16x8 pv.sdotup.sci.m16x4 pv.sdotup.sci.m16x2	pv.sdotusp.sc.m4x2 pv.sdotusp.sc.m8x2 pv.sdotusp.sc.m8x4 pv.sdotusp.sc.m16x8 pv.sdotusp.sc.m16x4 pv.sdotusp.sc.m16x2 pv.sdotusp.sci.h pv.sdotusp.sci.h pv.sdotusp.sci.c pv.sdotusp.sci.n pv.sdotusp.sci.m4x2 pv.sdotusp.sci.m8x4 pv.sdotusp.sci.m16x8 pv.sdotusp.sci.m16x4 pv.sdotusp.sci.m16x2	10 10 11 p.	c Bit- Exec 0,4(x4!) 1,4(x5!) v x20,x	ution 11,x10	int main() { SIMD_FMT(I convolution(SIMD_FMT(I	M8x4); (A, W, Res); M8x2);
pv.packl pv.packl pv.sdots	lo.b x15, x hi.b x15, x sp.b x20, x	5, x6 7, x8 15, x10	instru per fo and t	iction ormat ype		inst per	ruction type		convolution(}	(A, W, Res);

Vector Lockstep Exec. Mode (VLEM)

VLEM: Broadcast Unit

Introduction & Motivation
 Dustin Architecture Overview
 Tunable Mixed-Precision Computation
 Vector Lockstep Execution Mode
 Chip Results Summary
 Comparison with the State-of-the-art
 Conclusion

Chip Results Summary

Voltage vs. Frequency

- □ Measurements of the Cluster;
- □ Maximum frequency 205 MHz @ 1.2 V;
- □ ~45% energy saving with the Cluster in VLEM wrt MIMD mode.

Performance on MatMul kernels

Energy Efficiency on MatMul kernels

Introduction & Motivation
 Dustin Architecture Overview

 Tunable Mixed-Precision Computation
 Vector Lockstep Execution Mode

 Chip Results Summary
 Comparison with the State-of-the-art
 Conclusion

Comparison with the SoA

	SleepRunner [6]	SamurAI [7]	Mr.Wolf [8]	Vega [9]	Dustin (this work)
Technology	CMOS 28nm FDSOI	CMOS 28nm FDSOI	CMOS 40nm LP	CMOS 22nm FDSOI	CMOS 65nm
Die Area	0.68 mm ²	4.5 mm ²	10 mm ²	12 mm ²	10 mm ²
Applications	IoT GP	IoT GP + DNN	IoT GP + DNN	IoT GP + NSA+DNN	IoT GP + DNN + QNNs
CPU/ISA	CM0DS Thumb-2 subset	1x RI5CY RVC32IMFXpulp	9 x RI5CY RVC32IMFXpulp	10 x RI5CY RVC32IMFXpulp+SF	16 x MPIC CORES (RISC-V)
Int Precision (bits)	32	8, 16, 32	8, 16, 32	8, 16, 32	2, 4, 8, 16, 32 (plus Mixed-Precision)
Supply Voltage	0.4 - 0.8 V	0.45 - 0.9 V	0.8 - 1.1 V	$0.5-0.8~\mathrm{V}$	0.8 - 1.2 V
Max Frequency	80 MHz	350 MHz	450 MHz	450 MHz	205 MHz
Power Envelope	320 μW	96 mW	153 mW	49.4 mW	156 mW
¹ Best Integer Performance	31 MOPS (32b)	1.5 GOPS (8b) ²	12.1 GOPS (8b)	15.6 GOPS (8b)	15 GOPS (8b) 30 GOPS (4b) 58 GOPS (2b)
¹ Best Integer Efficiency	97 MOPS/mW @ 18.6 MOPS (32b)	230 GOPS/W @110 MOPS (8b) ²	190 GOPS/W @ 3.8 GOPS (8b)	614 GOPS/W @ 7.6 GOPS	303 GOPS/W @4.4 GOPS (8b) 570 GOPS/W @8.8 GOPS (4b) 1152 GOPS/W@17.3 GOPS(2b)

Dustin supports Mixed-Precision computation in HW

Better efficiency wrt solutions in 28nm and 40nm tech node

Comparable efficiency wrt Vega (22 nm)

 1 2 OPs = 1 8-bit (or 4-bit or 2-bit) MAC on MatMul benchmark unless differently specified.

² For fair comparison we consider the execution on software programmable cores.

- Introduction & Motivation
- Dustin Architecture Overview
 - Tunable Mixed-Precision Computation
 - Vector Lockstep Execution Mode
- Chip Results Summary
- Comparison with the State-of-the-art
 Conclusion

Conclusion

- Dustin SoC: IoT end-node with AI computing capabilities in tsmc
 65 nm tech node;
- RISC-V cores featuring 2b-to-32b bit-precision instruction set architecture (ISA) extensions enabling fine-grain tunable mixedprecision computation (**2x** to **7x** speed-up w.r.t. RI5CY);
- Software reconfigurable cluster in Vector Lockstep Execution Mode (~45% energy saving w.r.t. MIMD mode);
- Dustin is competitive with IoT end-nodes using much more scaled technology nodes (Peak Perf. 58 GOPS, Peak Eff. 1.15 TOPS/W).
- □ Despite a less scaled tech node, we reach energy efficiency in the order of **TOPS/W** \rightarrow Comparable with ASIC solutions.