
pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

Toward Gen.AI Pervasive Intelligent Systems
An Open RISC-V platform Approach

Luca Benini lbenini@iis.ee.ethz.ch

mailto:lbenini@iis.ee.ethz.ch

Perception →Gen.AI → Pervasive Gen.AI

Precise Interactive, creative Efficient, RT-safe, secure

2

Pervasive Gen.AI: Robots

https://pjlab-adg.github.io/DiLu/

LLM Reasoning on Human Commands & Robot Observations

3

Pervasive Gen.AI: AI native Phy for RAN

Traditional PHY

1

2

3

Hoydis, Jakob, et al. "Toward a 6G AI-native air interface." IEEE Communications Magazine 59.5 (2021)

H. Ye, L. Liang, G. Y. Li and B. -H. Juang, "Deep Learning-Based End-to-

End Wireless Communication Systems With Conditional GANs as Unknown

Channels," IEEE Transactions on Wireless Communications, 19.5, (2020)

https://developer.nvidia.com/blog/real-time-neural-receivers-drive-ai-ran-innovation/

4

https://developer.nvidia.com/blog/real-time-neural-receivers-drive-ai-ran-innovation/

Eval
Loss
(log)

Pervasive Gen.AI Challenge

5

Performance of GPT-4 and smaller models: y-axis mean log pass rate on a subset of the HumanEval dataset. Dotted line: A power
law fit to smaller models (excluding GPT-4) → Accurately predicts GPT-4’s performance. x-axis is training compute (log)

OpenAI’23 arXiv:2303.08774

Technology is not Enough

6

On-car Computing
PMAX < 1.5 kW

Efficient

[AMD HotChips24]

Model complexity
10× every ~2.5 years

Moore’s Law
10x every 12 years!

Efficiency through Heterogeneity: Multi-Specialization

7

Brain-inspired: Multiple areas, different structure different function!

Hailo-10H
M.2 Key M ET
Generative AI
Acceleration
Module (40TOPs,
few TOPs/W)

Looking up to the Leader
Dally HotChips 2023

8

Why NVIDIA owns the Market?

• It’s the software → flexibility, fast evolution!

• Is there a way to Escape “NVIDIA gravity”?

• Need a standard to combat a monopoly

9

RISC-V is a key enabler → max agility, enabling SW build-up, without vendor lock-in

Heterogeneous, Multiscale Accelerated Computing

10

EXT

ACC
#1

ACC
#2

EXT EXT EXT

Cluster 1

mem
bank

mem
bank

mem
bank

mem
bank

mem
bank

mem
bank

Tightly coupled data memory interconnectDMA

RV
core

RV
core

RV
core

RV
core

Instruction Cache

Local, Global, Off-Chip Interconnect

Computing cluster with tightly coupled accelerators

Extensions to processor cores

• Explore new extensions

• Efficient implementations

Shared-memory Accelerators

• Domain specific

• Local memory

L2
Accelerator

#1

L2
Accelerator

#2

L2
Accelerator

#M

Decoupled
accelerators

Multiple Decoupled Accelerators

• Communication

• Synchronization

EX
T

External
Memory

Controller

L2 memory

Peripherals

Host
core

Host, L2, L3 IOs

Multiple Scales of acceleration

Specialize interconnects too! Local, global, package, system

Snitch Core: Tiny, Latency Tolerant, Extensible RV PE

• Snitch: tiny (20KGE), extensible RV core

• Extensible through accelerator port

• Latency-tolerant through scoreboard
→ can issue ~10 non-blocking memOPs

• Paired with ISA extension subsystem

• Native streaming support

• Load/store elision

• Reduction of I$ pressure

11

Score-
board

Regfile

LSU

Acc. Port

ALUDecode

L0
 I

$

Sh
ar

ed
 L

1
 I

$

Memory

M
em

o
ry

Snitch
RV32I

Core

ctrl.

FREP
Sequencer FPU SSRs

Memory

ISA extension

ISA Extension: quantization Galore

12

Extension for Low-Bitwidth INT (binay, ternary, crumble, nibble, byte) and FP

• Tensor unit support (being standardized now – two versions: “attached” vs. “integrated”)

• OCP Microscaling Formats (MX) → RVV ISA is a good match

• Version 1.0 published Sept 2023 - Proponents: AMD, Arm, Intel, Meta, Microsoft, NVIDIA, Qualcomm

• Polynomial Approximation (PACE – stay tuned) [SemiAnalysis24]

[OCP24]

13

SSR & FREP: Streaming Extension
• SSR: Link register read/writes into implicit LD/ST

• Extension around the core’s register file

• Address generators (2-3KGE/SSR)

• Configured out of inner loop (LD/ST elision)

• Staggering: generators prefetch from memory (latency tolerant!)

• FREP: L0 instruction buffer (no I$ access)

• Pseudo-dual issue (Int pipeline can proceed in parallel)

• No boundary checking for loop (similar HW loop in DSPs)

• Boost FPU utilization → 100% (once setup is amortized)

dotp: 30% FPU dotp: 90% FPU

Latency Tolerance: Less expensive than OoO (CPU) and Multi-threading (GPU)

• 8 Snitch compute cores

• SIMD 64b FPU with SSRs & FREP

• 9th Core: DMA engine

• 512b interface to interconnect

• HW support for autonomous ≤ 2D transfers,
higher dimensions through SW

• Latency-tolerance block transfers (100s of cycles)

• 128 KiB TCDM

• 32-bank, low-latency shared scratchpad

• Double-buffer large chunks with DMA

• Shared TDCDM, I-cache and peripherals

• Shared DMA (10% overhead) for global latency tolerance

64 GB/s duplex

8 GB/s
duplex

Snitch Cluster: The Fundamental Compute Block

14

Specializing the Cluster for Gen.AI

• Attention is key

• Attention matrix is a square matrix of order input length

• Quadratic memory requirement vs. sequence length

• No asymmetry between operands (“weightless”)

• MatMul & Softmax dominate

15

MatMul

MatMul

Linear

Softmax

Linear Linear

Linear

Query Key Value

Attention

Softmax 𝐱 i =
exi−max(𝐱)

σj
n exj−max(𝐱)

Matmul Benefits from Large Shared-L1 clusters
• Why?

• Better global latency tolerance if L1size > 2× L2latency × L2bandwidth (Little’s law + double buffer)

• Smaller data partitioning overhead

• Larger Compute/Boundary bandwidth ratio: N3/N2 for MMUL grows linearly with N!

• A large “MemPool”: 256+ cores and 1+ MiB of shared L1 data memory

16

Tile
0

Tile
1

Tile
2

Tile
3

Tile
4

Tile
5

Tile
6

Tile
7

Tile
8

Tile
9

Tile
10

Tile
11

Tile
12

Tile
13

Tile
14

Tile
15

Local Ea
st

North Northeast

Group
2

Group
3

Group
0

Group
1Core

0
Core

1
Core

2
Core

3

Fully Connected Crossbar

Multi-banked
Scratchpad Memory

Local

North

Northeast

East

MemPool Tile Group

MemPool Cluster

MemPool Cluster: A physical-aware design

17

Group

MemPool
&

Terapool

MemPool ClusterMemPool Group

• A Scalable Manycore Architecture with Low-Latency Shared L1 Memory

• 256+ cores

• 1+ MiB of shared L1 data memory

• ≤ 8 cycle latency (Snitch can handle it)

• Hierarchical design

• Implemented in GF22

• Targeting 500 MHz (SS/0.72V/125°C)

• Reaching 600 MHz (TT/0.80V/25°C)

• Targeting iso-frequency with PULP

• Cluster area of 13 mm2

• 5 mm diagonal

• Round trip in 5 cycles

• Terapool: 1024 Cores!

MemPool + Integer Transformer Accelerator (ITA)

Tightly coupled Acceleration Enginee

• Matmul & Softmax

• Reduce pressure on memory and interconnect

Collaborative Execution

• Cores prepare activations for the next attention head

• Final head accumulation computed in cores

• Nonlinearity in cores (PACE)

18

MemPool + Integer Transformer Accelerator (ITA)

Integer Attention Accelerator

• 8-bit inputs, weights & outputs

• Builtin data marshaling & pipelined operation

• Streaming partial Softmax adding no additional latency

• Fused Q× KT, Softmax and A × V computation

• Support for hardware-aware Softmax
approximation in QuantLib

19

Dot Product
Units

Q K V Q.KT A.V Output

Softmax
DA EN

DI

𝑒𝑎𝑖−𝑎𝑚𝑎𝑥𝑛+1 = 𝑒𝑎𝑖−𝑎𝑚𝑎𝑥𝑛 ∙ 𝑒𝑎𝑚𝑎𝑥𝑛−𝑎𝑚𝑎𝑥𝑛+1

Extending ITA to MXTA

Dot Product between a pair of blocks
(Dot)

Accumulation over multiple blocks
(DotGeneral)

Conversion of output to block format

20

Attention on ITA

21

Performance
increase of 15x

Energy Efficiency
increase of 36x

Area Efficiency
increase of 74x

15x

8x

36x

20x

74x
40x

22

Scaling UP: Efficient and Flexible Data Movement

Problem: HBM Accesses are critical in
terms of

▪ Access energy

▪ Congestion

▪ High latency

Instead reuse data on lower levels of
the memory hierarchy

▪ Between clusters

▪ Across groups

Smartly distribute workload
▪ Clusters: Tiling, Depth-First

▪ Chiplets: E.g. Layer pipelining

Cluster

Group Crossbar

Cluster Cluster

Group Crossbar

Cluster

System Crossbar

HBM Die2Die

… …

Big trend!

Addressing interconnect scalability

• Fat-tree was very challenging in Implementation

• AXI has severe scalability issues

• Top-level Xbar had to be split up

• Still, interconnect takes up almost 40%*

• Working on NoC solution, FlooNoC

• Fully AXI4 compatible

• Solves AXI4 scalability issues

• Designed with awareness of physical design

• Wide & physical channels

23

A
X

I I
n

te
rc

o
n

n
e

ct
Compute
Clusters

*HBM & C2C excluded

Replacing the AXI interconnect with a NoC

• Potential for big area/performance
gains

• Only ~10% interconnect area

• 66% more clusters, same floorplan

• High Bandwidth: 629Gbps/link

• High Energy-Efficiency: 0.19pj/B/hop

24

MHA Mapping on NoC: FlattenAttention
• Proposed Dataflow Schedule of MHA

• We leverage all-cluster L1 for single head attention – Minimize I/O complexity

• Gen.AI specialized NoC

• Matrix transpose engine for transposition of (K -> KT)

• Collective operations on NoC

• Benchmark & Results

• 16x16 Clusters (8TFLOPS, 256kB L1), 2TB/s HBM

• One layer MHA of Llama3-70B (seq=4K, batch=8)

• Efficient collective operation support on NoC is essential

• 3x speedup to baseline

Total Runtime(ms)

Baseline:
Flash Attention for
Each Head on Each

Cluster

14.4

Flatten Attention
(w/o NoC collective)

17.7

Flatten Attention
(w/ NoC collective)

4.6

25

Scaling UP: From Chip to chiplets

26

Snitch Core Snitch Cluster

Occamy Group

Occamy ChipletOccamy System

27

Not Only Layer-by-Layer distribution across Chiplets!

𝑯(0) 𝑯(𝑛)…𝑯(1)

concat

∗ 𝑊𝑜

=

𝑯(𝑛−1)

Chiplet0 Chiplet1

C
h

ip
let0

C
h

ip
let1

Heads are parallelized over
quadrants & chiplets

𝐿0 𝐿1 𝐿=+

results are reduced across
chiplets

28

Linear Projection & Head Concatenation Fusion

C
2

C
-lin

k

HBM2E

HBM2E

Heads are already stored in clusters1

Weight tiles are loaded from HBM2

𝑯(0) 𝑊𝑜

𝑯(1) 𝑊𝑜

𝑯(2) 𝑊𝑜

𝑯(3) 𝑊𝑜

𝑯(4) 𝑊𝑜

𝑯(5) 𝑊𝑜

𝑯(8) 𝑊𝑜

𝑯(7) 𝑊𝑜

𝑯(6) 𝑊𝑜 𝑯(9) 𝑊𝑜

𝑯(10) 𝑊𝑜

𝑯(11) 𝑊𝑜

29

Linear Projection & Head Concatenation Fusion

C
2

C
-lin

k

HBM2E

HBM2E

Logarithmic-tree result reduction on-chiplet3

𝐿0

𝐿0

𝐿0

𝐿0

𝐿0

𝐿0

𝐿1

𝐿1

𝐿1

𝐿1

𝐿1

𝐿1

30

Linear Projection & Head Concatenation Fusion

C
2

C
-lin

k

HBM2E

HBM2E

Logarithmic-tree result reduction on-chiplet3

𝐿0𝐿0𝐿0𝐿0𝐿0𝐿0

𝐿1𝐿1𝐿1𝐿1𝐿1𝐿1

Reduction across chiplet4

𝐿0

31

Linear Projection & Head Concatenation Fusion

C
2

C
-lin

k

HBM2E

HBM2E

Logarithmic-tree result reduction on-chiplet3

𝐿

Reduction across chiplet4

𝐿0

32

Linear Projection & Head Concatenation Fusion

C
2

C
-lin

k

HBM2E

HBM2E

Results are stored back to HBM5

𝐿0 𝐿1

𝐿03 𝐿47

𝐿4 𝐿5 𝐿6 𝐿7

𝐿01 𝐿23 𝐿45 𝐿67

𝐿0 𝐿1 𝐿2 𝐿3

33

Synchronization

S R S R S R S R

t0

S R

t1

S R

t2

Chiplet 0 Chiplet 1

S R

C2C

HBM2E

𝐿

What next?

34

What next?

35

• Research on open-source energy-efficient computing
architectures

• Started in 2013, we are celebrating 10 years of our project this year

• Led by Luca Benini

• Involves ETH Zürich (Switzerland) and University of Bologna (Italy)

• Large group of almost 100 people

36

Thank You!

	Title and Overview
	Slide 1: Toward Gen.AI Pervasive Intelligent Systems An Open RISC-V platform Approach
	Slide 2: Perception  Gen.AI  Pervasive Gen.AI
	Slide 3: Pervasive Gen.AI: Robots
	Slide 4: Pervasive Gen.AI: AI native Phy for RAN
	Slide 5: Pervasive Gen.AI Challenge
	Slide 6: Technology is not Enough
	Slide 7: Efficiency through Heterogeneity: Multi-Specialization
	Slide 8: Looking up to the Leader
	Slide 9: Why NVIDIA owns the Market?
	Slide 10: Heterogeneous, Multiscale Accelerated Computing

	Project Summary and Architecture
	Slide 11: Snitch Core: Tiny, Latency Tolerant, Extensible RV PE
	Slide 12: ISA Extension: quantization Galore
	Slide 13: SSR & FREP: Streaming Extension
	Slide 14: Snitch Cluster: The Fundamental Compute Block
	Slide 15: Specializing the Cluster for Gen.AI
	Slide 16: Matmul Benefits from Large Shared-L1 clusters
	Slide 17: MemPool Cluster: A physical-aware design
	Slide 18: MemPool + Integer Transformer Accelerator (ITA)
	Slide 19: MemPool + Integer Transformer Accelerator (ITA)
	Slide 20: Extending ITA to MXTA
	Slide 21: Attention on ITA
	Slide 22: Scaling UP: Efficient and Flexible Data Movement
	Slide 23: Addressing interconnect scalability
	Slide 24: Replacing the AXI interconnect with a NoC
	Slide 25

	Assembly and Bringup Challenges
	Slide 26: Scaling UP: From Chip to chiplets
	Slide 27: Not Only Layer-by-Layer distribution across Chiplets!
	Slide 28: Linear Projection & Head Concatenation Fusion
	Slide 29: Linear Projection & Head Concatenation Fusion
	Slide 30: Linear Projection & Head Concatenation Fusion
	Slide 31: Linear Projection & Head Concatenation Fusion
	Slide 32: Linear Projection & Head Concatenation Fusion
	Slide 33: Synchronization
	Slide 34: What next?
	Slide 35: What next?
	Slide 36

