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Perception →Gen.AI → Pervasive Gen.AI

Precise Interactive, creative Efficient, RT-safe, secure
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Pervasive Gen.AI: Robots

https://pjlab-adg.github.io/DiLu/

LLM Reasoning on Human Commands & Robot Observations
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Pervasive Gen.AI: AI native Phy for RAN

Traditional PHY

1

2

3

Hoydis, Jakob, et al. "Toward a 6G AI-native air interface." IEEE Communications Magazine 59.5 (2021)

H. Ye, L. Liang, G. Y. Li and B. -H. Juang, "Deep Learning-Based End-to-

End Wireless Communication Systems With Conditional GANs as Unknown 

Channels," IEEE Transactions on Wireless Communications, 19.5, (2020)

https://developer.nvidia.com/blog/real-time-neural-receivers-drive-ai-ran-innovation/
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https://developer.nvidia.com/blog/real-time-neural-receivers-drive-ai-ran-innovation/


Eval
Loss 
(log)

Pervasive Gen.AI Challenge
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Performance of GPT-4 and smaller models: y-axis mean log pass rate on a subset of the HumanEval dataset. Dotted line: A power 
law fit to smaller models (excluding GPT-4) → Accurately predicts GPT-4’s performance. x-axis is training compute (log)

OpenAI’23 arXiv:2303.08774



Technology is not Enough
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On-car Computing 
PMAX < 1.5 kW

Efficient

[AMD HotChips24]

Model complexity
10× every ~2.5 years

Moore’s Law
10x every 12 years!



Efficiency through Heterogeneity: Multi-Specialization

7

Brain-inspired: Multiple areas, different structure different function!

Hailo-10H 
M.2 Key M ET
Generative AI 
Acceleration 
Module (40TOPs,  
few TOPs/W)



Looking up to the Leader
Dally HotChips 2023
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Why NVIDIA owns the Market?

• It’s the software → flexibility, fast evolution!

• Is there a way to Escape “NVIDIA gravity”?

• Need a standard to combat a monopoly
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RISC-V is a key enabler → max agility, enabling SW build-up, without vendor lock-in



Heterogeneous, Multiscale Accelerated Computing 
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• Explore new extensions

• Efficient implementations
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Specialize interconnects too!  Local, global, package, system



Snitch Core: Tiny, Latency Tolerant, Extensible RV PE 

• Snitch: tiny (20KGE), extensible RV core

• Extensible through accelerator port

• Latency-tolerant through scoreboard
→ can issue ~10 non-blocking memOPs

• Paired with ISA extension subsystem

• Native streaming support

• Load/store elision

• Reduction of I$ pressure 
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ISA Extension: quantization Galore
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Extension for Low-Bitwidth INT (binay, ternary, crumble, nibble, byte) and FP 

• Tensor unit support (being standardized now – two versions: “attached” vs. “integrated”)

• OCP Microscaling Formats (MX) → RVV ISA is a good match

• Version 1.0 published Sept 2023 - Proponents: AMD, Arm, Intel, Meta, Microsoft, NVIDIA, Qualcomm

• Polynomial Approximation (PACE – stay tuned) [SemiAnalysis24]

[OCP24]
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SSR & FREP:  Streaming Extension
• SSR: Link register read/writes into implicit LD/ST

• Extension around the core’s register file

• Address generators (2-3KGE/SSR) 

• Configured out of inner loop (LD/ST elision)

• Staggering: generators prefetch from memory (latency tolerant!)

• FREP: L0 instruction buffer (no I$ access)

• Pseudo-dual issue (Int pipeline can proceed in parallel)

• No boundary checking for loop (similar HW loop in DSPs)

• Boost FPU utilization → 100% (once setup is amortized)

dotp: 30% FPU dotp: 90% FPU

Latency Tolerance: Less expensive than OoO (CPU) and Multi-threading (GPU)



• 8 Snitch compute cores

• SIMD 64b FPU with SSRs & FREP

• 9th Core: DMA engine

• 512b interface to interconnect

• HW support for autonomous ≤ 2D transfers,
higher dimensions through SW

• Latency-tolerance block transfers (100s of cycles)

• 128 KiB TCDM

• 32-bank, low-latency shared scratchpad

• Double-buffer large chunks with DMA

• Shared TDCDM, I-cache and peripherals

• Shared DMA (10% overhead) for global latency tolerance

64 GB/s duplex

8 GB/s 
duplex

Snitch Cluster: The Fundamental Compute Block 
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Specializing the Cluster for Gen.AI 

• Attention is key 

• Attention matrix is a square matrix of order input length

•  Quadratic memory requirement vs. sequence length

•  No asymmetry between operands (“weightless”)

• MatMul & Softmax dominate

15

MatMul

MatMul

Linear

Softmax

Linear Linear

Linear

Query Key Value

Attention

Softmax 𝐱 i =
exi−max(𝐱)

σj
n exj−max(𝐱)



Matmul Benefits from Large Shared-L1 clusters
• Why? 

• Better global latency tolerance if L1size > 2× L2latency × L2bandwidth  (Little’s law + double buffer) 

• Smaller data partitioning overhead

• Larger Compute/Boundary bandwidth ratio:  N3/N2 for MMUL grows linearly with N!

• A large “MemPool”: 256+ cores and 1+ MiB of shared L1 data memory
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MemPool Cluster: A physical-aware design
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Group

MemPool
&

Terapool

MemPool ClusterMemPool Group

• A Scalable Manycore Architecture with Low-Latency Shared L1 Memory

• 256+ cores

• 1+ MiB of shared L1 data memory

• ≤ 8 cycle latency (Snitch can handle it)

• Hierarchical design

• Implemented in GF22

• Targeting 500 MHz (SS/0.72V/125°C)

• Reaching 600 MHz (TT/0.80V/25°C)

• Targeting iso-frequency with PULP

• Cluster area of 13 mm2

• 5 mm diagonal

• Round trip in 5 cycles

• Terapool: 1024 Cores!



MemPool + Integer Transformer Accelerator (ITA)

Tightly coupled Acceleration Enginee

• Matmul & Softmax

• Reduce pressure on memory and interconnect

Collaborative Execution

• Cores prepare activations for the next attention head

• Final head accumulation computed in cores

• Nonlinearity in cores (PACE)
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MemPool + Integer Transformer Accelerator (ITA)

Integer Attention Accelerator

• 8-bit inputs, weights & outputs

• Builtin data marshaling & pipelined operation

• Streaming partial Softmax adding no additional latency

• Fused Q× KT, Softmax and A × V computation

• Support for hardware-aware Softmax 
approximation in QuantLib
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Dot Product
Units

Q K V Q.KT A.V Output

Softmax
DA EN

DI

𝑒𝑎𝑖−𝑎𝑚𝑎𝑥𝑛+1 = 𝑒𝑎𝑖−𝑎𝑚𝑎𝑥𝑛 ∙ 𝑒𝑎𝑚𝑎𝑥𝑛−𝑎𝑚𝑎𝑥𝑛+1



Extending ITA to MXTA

Dot Product between a pair of blocks
(Dot)

Accumulation over multiple blocks
(DotGeneral)

Conversion of output to block format
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Attention on ITA
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Performance 
increase of 15x

Energy Efficiency 
increase of 36x

Area Efficiency 
increase of 74x

15x

8x

36x

20x

74x
40x
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Scaling UP: Efficient and Flexible Data Movement

Problem: HBM Accesses are critical in 
terms of

▪ Access energy

▪ Congestion

▪ High latency

Instead reuse data on lower levels of 
the memory hierarchy

▪ Between clusters

▪ Across groups

Smartly distribute workload
▪ Clusters: Tiling, Depth-First 

▪ Chiplets: E.g. Layer pipelining

Cluster

Group Crossbar

Cluster Cluster

Group Crossbar

Cluster

System Crossbar

HBM Die2Die

… …

Big trend!



Addressing interconnect scalability

• Fat-tree was very challenging in Implementation

• AXI has severe scalability issues

• Top-level Xbar had to be split up

• Still, interconnect takes up almost 40%*

• Working on NoC solution, FlooNoC

• Fully AXI4 compatible

• Solves AXI4 scalability issues

• Designed with awareness of physical design

• Wide & physical channels
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Replacing the AXI interconnect with a NoC

• Potential for big area/performance
gains

• Only ~10% interconnect area

• 66% more clusters, same floorplan

• High Bandwidth: 629Gbps/link

• High Energy-Efficiency: 0.19pj/B/hop
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MHA Mapping on NoC: FlattenAttention 
• Proposed Dataflow Schedule of MHA

• We leverage all-cluster L1 for single head attention – Minimize I/O complexity

• Gen.AI specialized NoC

• Matrix transpose engine for transposition of (K -> KT)

• Collective operations on NoC

• Benchmark & Results

• 16x16 Clusters (8TFLOPS, 256kB L1), 2TB/s HBM

• One layer MHA of Llama3-70B (seq=4K, batch=8)

• Efficient collective operation support on NoC is essential

• 3x speedup to baseline 

Total Runtime(ms)

Baseline:
Flash Attention for 
Each Head on Each 

Cluster

14.4

Flatten Attention 
(w/o NoC collective)

17.7

Flatten Attention
(w/ NoC collective)

4.6
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Scaling UP: From Chip to chiplets
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Snitch Core Snitch Cluster

Occamy Group

Occamy ChipletOccamy System
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Not Only Layer-by-Layer distribution across Chiplets!
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chiplets
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Linear Projection & Head Concatenation Fusion
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Linear Projection & Head Concatenation Fusion

C
2

C
-lin

k

HBM2E

HBM2E

Logarithmic-tree result reduction on-chiplet3

𝐿0

𝐿0

𝐿0

𝐿0

𝐿0

𝐿0

𝐿1

𝐿1

𝐿1

𝐿1

𝐿1

𝐿1



30

Linear Projection & Head Concatenation Fusion
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𝐿0
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Linear Projection & Head Concatenation Fusion
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Logarithmic-tree result reduction on-chiplet3

𝐿

Reduction across chiplet4



𝐿0
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Linear Projection & Head Concatenation Fusion
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Results are stored back to HBM5

𝐿0 𝐿1



𝐿03 𝐿47
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Synchronization
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What next?
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What next?
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• Research on open-source energy-efficient computing 
architectures

• Started in 2013, we are celebrating 10 years of our project this year

• Led by Luca Benini

• Involves ETH Zürich (Switzerland) and University of Bologna (Italy)

• Large group of almost 100 people

36

Thank You!
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