
SoftEx: a Low Power and Flexible Softmax Accelerator with
Fast Approximate Exponentiation

Transformers drive AI evolution in perception and generation but at a cost, relying on multi-
head self-attention (MHSA), which incorporates softmax, and additional projections.

TRANSFORMER-BASED MODELS

The softmax function is a bottleneck: it's used repeatedly per layer, relies on expensive
exponential calculations, and its non point-to-point nature complicates acceleration.

WHAT’S THE DEAL WITH SOFTMAX?

MOTIVATION

OUR EXP APPROXIMATION

SOFTEX

THE PROBLEM WITH EXP

Andrea Belano*‡, Yvan Tortorella*, Angelo Garofalo*†, Luca Benini*†, Davide Rossi*, Francesco Conti*

*University of Bologna, Bologna, Italy †ETH Zurich, Zurich, Switzerland ‡University of Pavia, Pavia, Italy

float __expf (float x)

{

 uint32_t abstop;

 uint64_t ki, t;

 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */

 double_t kd, xd, z, r, r2, y, s;

 xd = (double_t) x;

 abstop = top12 (x) & 0x7ff;

 if (__glibc_unlikely (abstop >= top12 (88.0f)))

 {

 /* |x| >= 88 or x is nan. */

 if (asuint (x) == asuint (-INFINITY))

	return 0.0f;

 if (abstop >= top12 (INFINITY))

	return x + x;

 if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */

	return __math_oflowf (0);

 if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */

	return __math_uflowf (0);

#if WANT_ERRNO_UFLOW

 if (x < -0x1.9d1d9ep6f) /* x < log(0x1p-149) ~= -103.28 */

	return __math_may_uflowf (0);

#endif

 }

 /* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */

 z = InvLn2N * xd;

#if TOINT_INTRINSICS

 kd = roundtoint (z);

 ki = converttoint (z);

#else

define SHIFT __exp2f_data.shift

 kd = math_narrow_eval ((double) (z + SHIFT)); /* Needs to be double. */

 ki = asuint64 (kd);

 kd -= SHIFT;

#endif

 r = z - kd;

 /* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */

 t = T[ki % N];

 t += ki << (52 - EXP2F_TABLE_BITS);

 s = asdouble (t);

 z = C[0] * r + C[1];

 r2 = r * r;

 y = C[2] * r + 1;

 y = z * r2 + y;

 y = y * s;

 return (float) y;

}

#define N (1 << EXP2F_TABLE_BITS)

const struct exp2f_data __exp2f_data = {

 .tab = {

0x3ff0000000000000, 0x3fefd9b0d3158574, 0x3fefb5586cf9890f, 0x3fef9301d0125b51,

0x3fef72b83c7d517b, 0x3fef54873168b9aa, 0x3fef387a6e756238, 0x3fef1e9df51fdee1,

0x3fef06fe0a31b715, 0x3feef1a7373aa9cb, 0x3feedea64c123422, 0x3feece086061892d,

0x3feebfdad5362a27, 0x3feeb42b569d4f82, 0x3feeab07dd485429, 0x3feea47eb03a5585,

0x3feea09e667f3bcd, 0x3fee9f75e8ec5f74, 0x3feea11473eb0187, 0x3feea589994cce13,

0x3feeace5422aa0db, 0x3feeb737b0cdc5e5, 0x3feec49182a3f090,
0x3feed503b23e255d,

0x3feee89f995ad3ad, 0x3feeff76f2fb5e47, 0x3fef199bdd85529c, 0x3fef3720dcef9069,

0x3fef5818dcfba487, 0x3fef7c97337b9b5f, 0x3fefa4afa2a490da, 0x3fefd0765b6e4540,

 },

 .shift_scaled = 0x1.8p+52 / N,

 .poly = { 0x1.c6af84b912394p-5, 0x1.ebfce50fac4f3p-3, 0x1.62e42ff0c52d6p-1 },

 .shift = 0x1.8p+52,

 .invln2_scaled = 0x1.71547652b82fep+0 * N,

 .poly_scaled = {

0x1.c6af84b912394p-5/N/N/N, 0x1.ebfce50fac4f3p-3/N/N, 0x1.62e42ff0c52d6p-1/N

 },

};

Accurate implementations of exp (e.g., glibc’s) are extremely complex.

Clearly not suitable for low-power applications, let alone hardware
accelerators.

We need an alternative.

What about less computationally-intensive approximations?

CORDIC

 Good accuracy and efficient.

 Slow convergence.

LUT-based methods

 Perform no computation at all besides interpolation.

 Costly in terms of area.

 Work best with limited ranges.

Polynomial approximations

 We can build optimal approximations using Chebyshev’s polynomials.

 For a good result we must limit the input range.

Approximate the base-2 exp of any fixed point number by
exploiting IEEE 754 floating point representation�
� Convert the number to fixed-point format�
� Multiply x by a scaling constant to align its integer part with

IEEE 754 exponent encoding�
� Add the floating-point bias into the integer part of the

scaled value�
� Reinterpret the bits as a float, yielding an approximate

exp(x).

INTEGRATION IN A TRANSFORMER ACCELERATION CLUSTER
SOFTEX AREA BREAKDOWNCLUSTER LAYOUT

SOFTEX POWER BREAKDOWN

Softmax Latency & Energy CONSUMPTION

We introduce SoftEx, a
parametric accelerator
designed for softmax
computation on
BFloat16 vectors. It
features N lanes, each
containing a
Multiplication and
Addition Unit (MAU)
and an Exponential Unit
(EXPU) that employs our
novel exponentiation
algorithm. Additionally, it
includes an
Accumulator module
with a single pipelined
FP32 Fused Multiply-Add
(FMA) unit. Softmax
processing is divided
into three stages:
Accumulation,
Inversion, and
Normalization.

128

256

384

512

0 050 200100 400150 600200 800250 300 12001000

128

256

384

512

Sequence Length

Sequence Length

Throughput (GOPS) Efficiency (GOPS/W)

CLUSTER THROUGHPUT @ 0.80V & ENERGY EFFICIENCY @ 0.55V COMPARISON WITH the STATE OF THE ART

Cluster power consumption during softmax: 276 mW (49.3 mW for
SoftEx, with the rest dominated by the SRAM banks) at 0.80V or 54.4
mW at 0.55V (8.19 mW for SoftEx).

Inside SoftEx, the MAUs dominate the power consumption (24.9%),
followed by the adder tree (23.9%). Minimal contribution from the
exponential units (8.4%).

Benchmarked on
MobileBERT’s
attention layer.

With SoftEx, at 0.8V
the cluster achieves up
to 324 GOPS (87% of
the theoretical peak).
All software
implementations result
in a substantial
throughput loss
(>2.17× slowdown for
larger sequence sizes),
even when targeting
the fastest and least
precise exps.

In terms

of energy efficiency,
at 0.55V the system
achieves up to 1.30

TOPS/W, improving
this value by
20.5-75.4% with
respect to

the eight RISC-V
cores running
Schraudolph exps.

e_exp2f_data.c

e_expf.c

SCHRAUDOLPH’S METHOD

We propose to replace the fractional part of x with a piecewise
polynomial that approximates the function:

For 𝑥 ∈ [0,0.5] we sum a straight-line tangent to 2 𝑥 − 1 in 0 with a
parabola centered in 0.

For 𝑥 ∈ [0.5,1] as before, but the functions are centered in 1.

By approximating 1-x with ~x we get:

Very low bitwidth: 4 bits for ɑ and β, 8 bits for γ₁ and γ₂.

Mean relative error of 0.14% and a maximum relative error of
0.78%, 13× and 3.7× lower compared to Schraudolph's method.

STREAMER

EXPU FI
FO

FIFOFIFO

EXPU
ADD 
TREE

SINK SOURCE

MUX

MEMORY CTRL TARGET

ZE
RO

 P
AD

FP32 FMA>?

REG

FILE

FSM

MAUMAU
MUL

ADD

DENOMINATOR
ACCUM

MAX UNIT

LANE

N×16

32

16

16

32

32

N×16

p

Cluster fully placed and
routed in 12 nm technology.

Two operating points�
� 0.80V and 1.12 GHz to

maximize throughpu�
� 0.55V and 460 MHz to

maximize energy
efficiency

SoftEx area utilization: 0.033
mm�
� 2.75% of the 1.21 mm²

cluste�
� 14% of the Tensor

Processing Engine area

SoftEx’s area dominated by
the Adder Tree (30.9%) and
the MAUs (22.3%).
Exponential Units only
account for 9.9% of the total

22.3%

22.3%

Streamer
EXPUs

Other

Controller

FIFOs

Adder Tree

Denominator 
Accumulator MAUs

9.9%

6.9%

6.9%

4.9%
4.2%

30.9%

22.3%

22.3%

Streamer
EXPUs

Other

Controller

FIFOs

Adder Tree

Denominator 
Accumulator MAUs

9.9%

6.9%

6.9%

4.9%
4.2%

30.9%

TCDM

DMAC

INTERCO

CORESICACHE

SOFTEX

TENSOR PROCESSING ENGINE

Integrated in a
Transformer
acceleration cluster
featuring

8 RI5CY RISC-V cores
with the Xpulp
extension and private
FPU

256KiB of shared
scratchpad memory
(TCDM) split among
32 banks

32 KiB of shared
instruction cache

RedMulE Tensor
Processing Engine in
24x8 computing
element configuration

SoftEx softmax
accelerator in 16 lanes
configuration

BANK
0

BANK
1

BANK
2

RV-32
0

RV-32
1

BANK
29

BANK
30

BANK
31

32 32 32

32 32

32 32

RV-32
6

RV-32
7 DMAC

Tensor 
Processing 

Engine
SoftExICACHE

TCDM

...
TCDM ARBITER

PERIPH INTERCONNECT

CLUSTER INTERCONNECT

32 32

32

32 32 64 64

32 32 32

512

512 256

SoftEx softmax performance benchmarked using activations from
MobileBERT’s attention layer with different sequence lengths.

Up to 10.8× faster softmax and 26.8× lower energy compared to the 8
RISC-V cores employing Schraudolph’s method. 

MEMORY
RDY/VLD STREAM

ACCUM.
NORM.
BOTH

[Tambe et al.] ITA [Wiese et al.] [Keller et al.] ViTA [Chen et al.] [Dumoulin et al.] [Agrawal et al.] [NVIDIA H100

SXM5] This Work

Data Format FP8 INT8 INT8 INT8 INT8 FP16 BF16 BF16

Technology (nm) 12 22 5 28 28 7 4 12

Area (mm2) 4.60 0.991 0.153 2.00 1.48 19.6 814 1.21

Voltage (V) 0.62-1.0 0.65 0.46-1.05 1.05 - 0.55-0.75 - 0.55-0.8

Power (mW) 10-122 132 - 217 18.4 4400-13000 700000 110-581

Frequency (MHz) 77-717 425 152-1760 200 100 1000-1600 1830 460-1120

MAC Units 256 1024 512 512 256 4096 528 192

On-Chip SRAM

 (KiB) 256 1024 512 512 256 4096 528 192

Peak Throughput

 (GOPS) 367 870 1800 204 51.2 12800 989400 430

Peak Efficiency

 (TOPS/W) 3.0 5.49 39.1 0.943 2.78 1.8 1.41 1.61

SoftEx Schraudolph glibc

SoftEx Schraudolph glibc

Corresponding author: andrea.belano2@unibo.it

[Tambe et al.] T. Tambe, J. Zhang et al., “22.9 a 12nm 18.1tflops/W sparse transformer processor with entropy-based early exit, mixed-precision predication and fine-grained power management,” in 2023 IEEE International Solid- State Circuits Conference (ISSCC)

[Wiese et al.] P. Wiese, G. ˙Islamo˘glu et al., “Toward Attention-based TinyML: A Heterogeneous Accelerated Architecture and Automated Deployment Flow,” Aug. 2024. [Online]. Available: http://arxiv.org/abs/2408.02473

[Keller et al.] B. Keller, R. Venkatesan et al., “A 17–95.6 TOPS/W deep learning inference accelerator with per-vector scaled 4-bit quantization for transformers in 5nm,” in 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)

[Chen et al.] C. Chen, L. Li, and M. M. Sabry Aly, “ViTA: A Highly Efficient Dataflow and Architecture for Vision Transformers,” in 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE)

[Dumoulin et al.] J. Dumoulin, P. Houshmand, V. Jain, and M. Verhelst, “Enabling Efficient Hardware Acceleration of Hybrid Vision Transformer (ViT) Networks at the Edge,” in 2024 IEEE International Symposium on Circuits and Systems (ISCAS)

[Agrawal et al.] A. Agrawal, S. K. Lee et al., “9.1 A 7nm 4-Core AI Chip with 25.6TFLOPS Hybrid FP8 Training, 102.4TOPS INT4 Inference and Workload-Aware Throttling,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC)

[NVIDIA H100 SXM5] “NVIDIA H100 Tensor Core GPU Architecture Overview.” [Online]. Available: https://resources.nvidia.com/en-us-tensor-core

x100 x50 x10 x1
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Matmul Speedup

Re
la

tiv
e

Ru
nt

im
e

Softmax Linear Other

128 256 384 512
10²

10³

10⁴

10⁵

10⁶

10⁷

10⁸

N
um

ber of C
ycles

Sequence Length Sequence Length
256 512128 384

0

10⁰

10¹

10²

10³

10⁴

γ₂γ1

1

0

0

1

0 1

0 1

133

RO
U

N
D

BIAS 7

1

0

