
SoftEx: a Low Power and Flexible Softmax Accelerator with 
Fast Approximate Exponentiation

Transformers drive AI evolution in perception and generation but at a cost, relying on multi-
head self-attention (MHSA), which incorporates softmax, and additional projections.

TRANSFORMER-BASED MODELS

The softmax function is a bottleneck: it's used repeatedly per layer, relies on expensive 
exponential calculations, and its non point-to-point nature complicates acceleration.

WHAT’S THE DEAL WITH SOFTMAX?
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float __expf (float x)


{


  uint32_t abstop;


  uint64_t ki, t;


  /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */


  double_t kd, xd, z, r, r2, y, s;





  xd = (double_t) x;


  abstop = top12 (x) & 0x7ff;


  if (__glibc_unlikely (abstop >= top12 (88.0f)))


    {


      /* |x| >= 88 or x is nan.  */


      if (asuint (x) == asuint (-INFINITY))


	return 0.0f;


      if (abstop >= top12 (INFINITY))


	return x + x;


      if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */


	return __math_oflowf (0);


      if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */


	return __math_uflowf (0);


#if WANT_ERRNO_UFLOW


      if (x < -0x1.9d1d9ep6f) /* x < log(0x1p-149) ~= -103.28 */


	return __math_may_uflowf (0);


#endif


    }





  /* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k.  */


  z = InvLn2N * xd;


#if TOINT_INTRINSICS


  kd = roundtoint (z);


  ki = converttoint (z);


#else


# define SHIFT __exp2f_data.shift


  kd = math_narrow_eval ((double) (z + SHIFT)); /* Needs to be double.  */


  ki = asuint64 (kd);


  kd -= SHIFT;


#endif


  r = z - kd;





  /* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */


  t = T[ki % N];


  t += ki << (52 - EXP2F_TABLE_BITS);


  s = asdouble (t);


  z = C[0] * r + C[1];


  r2 = r * r;


  y = C[2] * r + 1;


  y = z * r2 + y;


  y = y * s;


  return (float) y;


}

#define N (1 << EXP2F_TABLE_BITS)





const struct exp2f_data __exp2f_data = {


  .tab = {


0x3ff0000000000000, 0x3fefd9b0d3158574, 0x3fefb5586cf9890f, 0x3fef9301d0125b51,


0x3fef72b83c7d517b, 0x3fef54873168b9aa, 0x3fef387a6e756238, 0x3fef1e9df51fdee1,


0x3fef06fe0a31b715, 0x3feef1a7373aa9cb, 0x3feedea64c123422, 0x3feece086061892d,


0x3feebfdad5362a27, 0x3feeb42b569d4f82, 0x3feeab07dd485429, 0x3feea47eb03a5585,


0x3feea09e667f3bcd, 0x3fee9f75e8ec5f74, 0x3feea11473eb0187, 0x3feea589994cce13,


0x3feeace5422aa0db, 0x3feeb737b0cdc5e5, 0x3feec49182a3f090, 
0x3feed503b23e255d,


0x3feee89f995ad3ad, 0x3feeff76f2fb5e47, 0x3fef199bdd85529c, 0x3fef3720dcef9069,


0x3fef5818dcfba487, 0x3fef7c97337b9b5f, 0x3fefa4afa2a490da, 0x3fefd0765b6e4540,


  },


  .shift_scaled = 0x1.8p+52 / N,


  .poly = { 0x1.c6af84b912394p-5, 0x1.ebfce50fac4f3p-3, 0x1.62e42ff0c52d6p-1 },


  .shift = 0x1.8p+52,


  .invln2_scaled = 0x1.71547652b82fep+0 * N,


  .poly_scaled = {


0x1.c6af84b912394p-5/N/N/N, 0x1.ebfce50fac4f3p-3/N/N, 0x1.62e42ff0c52d6p-1/N


  },


};

Accurate implementations of exp (e.g., glibc’s) are extremely complex.

Clearly not suitable for low-power applications, let alone hardware 
accelerators.

We need an alternative.

What about less computationally-intensive approximations? 



CORDIC 

        Good accuracy and efficient. 

        Slow convergence.



LUT-based methods 

         Perform no computation at all besides interpolation.

         Costly in terms of area.

         Work best with limited ranges.



Polynomial approximations 

       We can build optimal approximations using Chebyshev’s polynomials.

       For a good result we must limit the input range.

Approximate the base-2 exp of any fixed point number by 
exploiting IEEE 754 floating point representation�
� Convert the number to fixed-point format�
� Multiply x by a scaling constant to align its integer part with 

IEEE 754 exponent encoding�
� Add the floating-point bias into the integer part of the 

scaled value�
� Reinterpret the bits as a float, yielding an approximate 

exp(x).

INTEGRATION IN A TRANSFORMER ACCELERATION CLUSTER
SOFTEX AREA BREAKDOWNCLUSTER LAYOUT

SOFTEX POWER BREAKDOWN

Softmax Latency & Energy CONSUMPTION

We introduce SoftEx, a 
parametric accelerator 
designed for softmax 
computation on 
BFloat16 vectors. It 
features N lanes, each 
containing a 
Multiplication and 
Addition Unit (MAU) 
and an Exponential Unit 
(EXPU) that employs our 
novel exponentiation 
algorithm. Additionally, it 
includes an 
Accumulator module 
with a single pipelined 
FP32 Fused Multiply-Add 
(FMA) unit. Softmax 
processing is divided 
into three stages: 
Accumulation, 
Inversion, and 
Normalization.
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CLUSTER THROUGHPUT @ 0.80V & ENERGY EFFICIENCY @ 0.55V COMPARISON WITH the STATE OF THE ART 

Cluster power consumption during softmax: 276 mW (49.3 mW for 
SoftEx, with the rest dominated by the SRAM banks) at 0.80V or 54.4 
mW at 0.55V (8.19 mW for SoftEx).



Inside SoftEx, the MAUs dominate the power consumption (24.9%), 
followed by the adder tree (23.9%). Minimal contribution from the 
exponential units (8.4%).

Benchmarked on 
MobileBERT’s 
attention layer.



With SoftEx, at 0.8V 
the cluster achieves up 
to 324 GOPS (87% of 
the theoretical peak). 
All software 
implementations result 
in a substantial 
throughput loss 
(>2.17× slowdown for 
larger sequence sizes), 
even when targeting 
the fastest and least 
precise exps.



In terms

of energy efficiency, 
at 0.55V the system 
achieves up to 1.30

TOPS/W, improving 
this value by 
20.5-75.4% with 
respect to

the eight RISC-V 
cores running 
Schraudolph exps.

e_exp2f_data.c

e_expf.c

SCHRAUDOLPH’S METHOD

We propose to replace the fractional part of x with a piecewise 
polynomial that approximates the function:

For 𝑥 ∈ [0,0.5] we sum a straight-line tangent to 2 𝑥 − 1 in 0 with a 
parabola centered in 0.

For 𝑥 ∈ [0.5,1] as before, but the functions are centered in 1.

By approximating 1-x with ~x we get:

Very low bitwidth: 4 bits for ɑ and β, 8 bits for γ₁ and γ₂.

Mean relative error of 0.14% and a maximum relative error of 
0.78%, 13× and 3.7× lower compared to Schraudolph's method. 
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Cluster fully placed and 
routed in 12 nm technology.



Two operating points�
� 0.80V and 1.12 GHz to 

maximize throughpu�
� 0.55V and 460 MHz to 

maximize energy 
efficiency



SoftEx area utilization: 0.033 
mm�
� 2.75% of the 1.21 mm² 

cluste�
� 14% of the Tensor 

Processing Engine area



SoftEx’s area dominated by 
the Adder Tree (30.9%) and 
the MAUs (22.3%). 
Exponential Units only 
account for 9.9% of the total
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Integrated in a 
Transformer 
acceleration cluster 
featuring

8 RI5CY RISC-V cores 
with the Xpulp 
extension and private 
FPU

256KiB of shared 
scratchpad memory 
(TCDM) split among 
32 banks

32 KiB of shared 
instruction cache

RedMulE Tensor 
Processing Engine in 
24x8 computing 
element configuration

SoftEx softmax 
accelerator in 16 lanes 
configuration
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SoftEx softmax performance benchmarked using activations from 
MobileBERT’s attention layer with different sequence lengths.



Up to 10.8× faster softmax and 26.8× lower energy compared to the 8 
RISC-V cores employing Schraudolph’s method. 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[Tambe et al.] ITA [Wiese et al.] [Keller et al.] ViTA [Chen et al.] [Dumoulin et al.] [Agrawal et al.] [NVIDIA H100 

SXM5] This Work

Data Format FP8 INT8 INT8 INT8 INT8 FP16 BF16 BF16

Technology (nm) 12 22 5 28 28 7 4 12

Area (mm2) 4.60 0.991 0.153 2.00 1.48 19.6 814 1.21

Voltage (V) 0.62-1.0 0.65 0.46-1.05 1.05 - 0.55-0.75 - 0.55-0.8

Power (mW) 10-122 132 - 217 18.4 4400-13000 700000 110-581

Frequency (MHz) 77-717 425 152-1760 200 100 1000-1600 1830 460-1120

MAC Units 256 1024 512 512 256 4096 528 192

On-Chip SRAM

 (KiB) 256 1024 512 512 256 4096 528 192

Peak Throughput

 (GOPS) 367 870 1800 204 51.2 12800 989400 430

Peak Efficiency

 (TOPS/W) 3.0 5.49 39.1 0.943 2.78 1.8 1.41 1.61

SoftEx Schraudolph glibc

SoftEx Schraudolph glibc
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