
SpikeStream: Accelerating Spiking Neural Network
Inference on RISC-V Clusters with Sparse

Computation Extensions

1Department of Electrical, Electronic, and Information Engineering (DEI) – University of Bologna, Italy
2Integrated Systems Lab (IIS) - ETH Zurich, Switzerland

3Autonomous Robots Lab - Norwegian University of Science and Technology (NTNU) , Norway

S. Manoni1, P. Scheffler2, L. Zanatta3, A. Acquaviva1, L. Benini1,2, A. Bartolini1

s.manoni@unibo.it

1. Introduction and Motivation

2. Target Platform: Snitch Cluster

● The pursuit of efficient, low-latency machine intelligence has led to

Neuromorphic systems inspired by the brain. These models rely on

computations and algorithms based on Spiking Neural Networks

● SNNs incorporate spike-based communication between neurons,

activation sparsity, and complex neuronal dynamics while

maintaining traditional neural network topologies

●
● Traditional CPUs and GPUs struggle to deliver high-efficiency in the

presence of spikes and sparsity

● Dedicated accelerators are often entirely designed only for SNN

models, making them an expensive and inflexible solution

● Stream Registers (SRs) emerged as a CPU extension to overcome

memory bottlenecks, enabling hardware-managed data streaming
with support for indirect (gather/scatter) access for sparse workloads

● 8 RV32G Cores enhanced with

○ Double-precision FPU

○ Indirect SRs

○ Floating-point HW loops

○ FP SIMD extension

● 1 DMA Core

● 128KiB Low-Latency Scratchpad Memory (SPM)

3. SpikeStream Software Architecture
● We introduce target architecture-aware optimizations

○ Tensor compression: CSR-derived fibre tree format storing binary

activations as spike positions using indices and spatial pointers

○ Task Parallelization: Computation parallelized across Snitch

Cluster cores (receptive field per core). Workload-stealing with

atomic tagging balances irregular parallelization.

○ Data parallelization: Batched HWC weight layout enables output

channel parallelism across FPU lanes

○ Double Buffering: DMA core used for sparse activation tiling

○ Streaming Acceleration (SA): Indirect weight loads mapped to

indexed streams (SR-managed address gen/memory ops),

decoupling FPU via hardware-loop control

4. Results
● Synth in GF12LP+. Energy from

post-layout sim @1GHz-0.8V:

○ Performance:

■ Comparison over w.r.t

non-SA FP16: Avg. 5.4x
(FP16), 9.8x (FP8)

■ SpikeStream FP8 is 4.71×

slower than LSMCore but

2.38× faster than Loihi

○ Energy:

■ SpikeStream FP16 (FP8)

achieves 2.37 (3.46)× lower
energy vs. LSMCore

