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1. Introduction and Motivation 3. SpikeStream Software Architecture

e The pursuit of efficient, low-latency machine intelligence has led to e We introduce target architecture-aware optimizations
Neuromorphic systems inspired by the brain. These models rely on o Tensor compression: CSR-derived fibre tree format storing binary
computations and algorithms based on Spiking Neural Networks activations as spike positions using indices and spatial pointers

e SNNSs incorporate spike-based communication between neurons, o Task Parallelization: Computation parallelized across Snitch
activation sparsity, and complex neuronal dynamics while Cluster cores (receptive field per core). Workload-stealing with
malntalnlng traditional neural network topologies atomic tagging balances irregular parallelization.

o Data parallelization: Batched HWC weight layout enables output
channel parallelism across FPU lanes

weights o Double Buffering: DMA core used for sparse activation tiling
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e © xS g indexed streams (SR-managed address gen/memory ops),
e Traditional CPUs and GPUs struggle to deliver high-efficiency in the decoupling FPUviaharaware-loop control ____JEEEN
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presence of spikes and sparsity e — : : Lot
e Dedicated accelerators are often entirely designed only for SNN s 812 5 LS TR s £ 5 &
models, making them an expensive and inflexible solution next_r 7] - 7% B

!

stream; Eﬁﬁ
ﬁ‘@
- f _é
-
N
=i

Vi

e Stream Registers (SRs) emerged as a CPU extension to overcome _
memory bottlenecks, enabling hardware-managed data streaming o011
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with support for indirect (gather/scatter) access for sparse workloads || ¥
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2. Target Platform: Snitch Cluster 4. Results ([
e 8 RV32G Cores enhanced with e Synthin GF12LP+. Energy from [ =woee smwseson s wrcuann ] °
o Double-precision FPU post-layout sim @1GHz-0.8V: £~ \ _
o Indirect SRs o Performance: :
o Floating-point HW loops m Comparison over w.r.t .
o FP SIMD extension NON-SAFP16: Avg. 5.4x it tim s :
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