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1. Introduction and Motivation

2. Target Platform: Snitch Cluster

● The pursuit of efficient, low-latency machine intelligence has led to 

Neuromorphic systems inspired by the brain. These models rely on 

computations and algorithms based on Spiking Neural Networks

● SNNs incorporate spike-based communication between neurons, 

activation sparsity, and complex neuronal dynamics while 

maintaining traditional neural network topologies

●
● Traditional CPUs and GPUs struggle to deliver high-efficiency in the 

presence of spikes and sparsity

● Dedicated  accelerators are often entirely designed only for SNN 

models, making them an expensive and inflexible solution

● Stream Registers (SRs) emerged as a CPU extension to overcome 

memory bottlenecks, enabling hardware-managed data streaming 
with support for indirect (gather/scatter) access for sparse workloads

● 8 RV32G Cores enhanced with 

○ Double-precision FPU

○ Indirect SRs

○ Floating-point HW loops

○ FP SIMD extension

● 1 DMA Core

● 128KiB Low-Latency Scratchpad Memory (SPM)

3. SpikeStream Software Architecture
● We introduce target architecture-aware optimizations

○ Tensor compression: CSR-derived fibre tree format storing binary 

activations as spike positions using indices and spatial pointers

○ Task Parallelization: Computation parallelized across Snitch 

Cluster cores (receptive field per core). Workload-stealing with 

atomic tagging balances irregular parallelization.

○ Data parallelization: Batched HWC weight layout enables output 

channel parallelism across FPU lanes

○ Double Buffering: DMA core used for sparse activation tiling

○ Streaming Acceleration (SA): Indirect weight loads mapped to 

indexed streams (SR-managed address gen/memory ops), 

decoupling FPU via hardware-loop control

4. Results
● Synth in GF12LP+. Energy from 

post-layout sim @1GHz-0.8V:

○ Performance:

■  Comparison over w.r.t 

non-SA FP16: Avg. 5.4x 
(FP16), 9.8x (FP8)

■ SpikeStream FP8 is 4.71× 

slower than LSMCore but 

2.38× faster than Loihi

○ Energy: 

■ SpikeStream FP16 (FP8) 

achieves 2.37 (3.46)× lower 
energy vs. LSMCore


