
Evaluating IOMMU-Based Shared Virtual Addressing

for RISC-V Embedded Heterogeneous SoCs
Cyril Koenig1, Enrico Zelioli1, Luca Benini1,2

1Integrated Systems Laboratory, ETH Zurich
2Department of Electrical, Electronic, and Information Engineering, University of Bologna

Shared Virtual Addressing allows for zero-copy offloading and

simplifies programming heterogeneous platforms. However, IO

page walking can cause significant overhead. [1] [2]

 We propose an open-source platform to evaluate IOMMU

overhead on heterogeneous benchmarks using SVA.

 We show that IOMMU overheads fall below 5% for pro-

posed kernels when integrating a last-level cache (LLC).

• The platform RTL is available on Github for further research

on shared virtual addressing and page table walking overhead.

• Our study shows that last-level caches are a key enabler to

heterogeneous acceleration with SVA, reducing IOMMU

overhead below 5% of the accelerator’s runtime.

• Scratchpad-based accelerator that typically exploit DRAM with

DMA engines can rely on SW coherency and LLC bypass.

3. Platform Architecture

4 IOMMU Overhead Evaluation

4 Conclusion

References

[1] Y. Hao, et Al. “Supporting Address Translation for Accelerator-Centric Architectures”

[2] Fu et Al. “Active Forwarding: Eliminate IOMMU Address Translation for Accelerator-rich

Architectures”

[3] M. Rodríguez, et Al. “Open-source RISC-V Input/Output Memory Management

Unit (IOMMU) IP”

1. Motivation

pulp-platform.org pulp-platform @pulp_platform cykoenig@iis.ee.ethz.ch

paper

source code and

FPGA flow

2. Zero-copy offloading

Copying data to phy-

sically contiguous

device memory pre-

vents heterogeneous

accelerations of me-

mory-bound kernels.

Creating page table

entries for IOMMU is

significantly faster.

Heterogeneous AXPY with and without zero-copy

The proposed platform contains:

• Linux capable CVA6 core

• Programmable Many-Core Accelerator (PMCA)

• RISC-V IOMMU [3] with four IO-TLB entries

A last-level cache with bypass unit allow the device DMA to fully

utilize the DDR bandwidth (with appropriate SW coherency) .

A reconfigurable delayer emulates different memory latencies.

Even on compute bound kernels (GeMM), IO page walking can

increase accelerator’s runtime by 17.6% under high DRAM

latency. Memory bound kernels (GeMV) can face even much

larger overheads: 85.6%

Previous work [1] [2] propose architectural changes in host and

device MMUs to face this issue. We show that adding a shared

last-level cache suffices to reduce this overhead below 5%.

Accelerator runtime (using double-buffering) with

IOMMU overhead at different DRAM latencies

Even with interfering host

traffic. We show that

thanks to the LLC, average

page table walking time is

greatly reduced: from 3000

cycles to 150 cycles in high

latency memory systems.

