
pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

Integrated Systems Laboratory (ETH Zürich)

Efficient Parallelization of 5G-PUSCH on a Scalable RISC-V 
Many-Core Processor

Marco Bertuletti mbertuletti@iis.ee.ethz.ch
Yichao Zhang yiczhang@iis.ee.ethz.ch
Alessandro Vanelli-Coralli avanelli@iis.ee.ethz.ch
Luca Benini lbenini@iis.ee.ethz.ch



Introduction

• 5G processing requires high throughput on large dimensional signals

• From ASIC design to software-defined network processing (time-to-market ↓)

• Research on RISCV open platforms: ensures long-term scalability, speeds-up community-

developed solutions, reduces vendor captivity

17-19 April 2023 2

• Complexity evaluation of 5G-PUSCH processing chain
• Implementation of key kernels on a RISCV many-core cluster with low access latency 

• Barriers for partial synchronization in the cluster
• Evaluation of speed-up and utilization



PUSCH processing

We receive frequency-
multiplexed transmissions = 
symbols

• Orthogonal subcarriers

• From multiple antennas

• 14 symbols in Transmission 
Time-Interval (0.5ms)

17-19 April 2023

3

(Pilot symbols, are known at the 
RX + TX, and allow the 
reconstruction of the channel)

30 kHz

0.5ms

s
u
b
-c

a
rr

ie
rs

symbols



PUSCH processing

17-19 April 2023 4

𝑥 = ෡𝐻𝐻 ෡𝐻 + 𝜎2𝐼
−1 ෡𝐻𝐻𝑦

෡𝐻 = ൗ
𝑦
𝑥𝑝

𝑦𝑝 = ෡𝐻𝑥𝑝

𝜀 = 𝑦 − 𝑦𝑝
𝜎2𝐼 = 𝑅𝜀𝜀

Antennas

OFDM 

demodulation

FFT

Beamforming

Matrix-Matrix 

Multiplication

MIMO

Linear System 

Solver

CHE

Element-wise

division

NE

Autocorrelation



PUSCH processing: Computational complexity

17-19 April 2023 5

• A computational complexity analysis shows that most of the MACs are in the 
FFT, the BF and the MIMO stages

• We therefore focus on the optimization of these steps

MACs per stage in PUSCH chain

Impact of MIMO 
stage depends 
on the number 

of UEs 
transmitting on 
the same sub-

carrier.

U
E

s



MemPool/TeraPool: our target many-core

Snitch processing core

• RV32IMA instruction set 
architecture + Xpulpimg

• Single-stage single-issue core + 
LSU & IPU (pipelined)

17-19 April 2023 6



MemPool/TeraPool: NUMA architecture

Tiles are grouped in hierarchical levels

17-19 April 2023 7

Memory request Latency

Bank in the same Tile 1 cycle

Bank in a different Tile of the same Group 3 cycles

Bank in a Tile of another Group 5 cycles

Cavalcante, Matheus, et al. “DATE
2021: A shared L1 memory 
many-core cluster with low-
latency interconnect." (2021).

MemPool TeraPool

Cores per Tile 4 8

Tiles per Group 16 16

Groups per cluster 4 8

=256 cores =1024 cores



Programming model

Fork-join programming model

• Serial execution forks to parallel execution

• Cores access memory concurrently

• Cores are synchronized and parallel
execution joins to serial

17-19 April 2023 8

time

Core 0

Core 1

Core 2

… barrier

Parallel accesses

memory



Synchronization barriers

Synchronization barriers

• Arrival = atomic writes to a synch variable

• Hardwired wake-up triggers for departure

17-19 April 2023 9

8 CSRs for Tiles
1 CSR for Groups
1 CSR for Cores

C51

0

fetch

add

1

C28

fetch

add
2

C32

1023



Implemented kernels

To implement the most computationally complex PUSCH kernels

• We enforced local access to the banks in a Tile, to avoid long latency

• We limited the contentions for memory shared interconnection resources

• We kept synchronization to the bare minimum

17-19 April 2023 10



Implemented kernels: FFT

17-19 April 2023 11

The radix-4 butterfly gets
inputs at distance N/4

Data stored in the local memory of 
cores using it in the subsequent stage

Data is folded to keep
these accesses local



Implemented kernels: FFT

17-19 April 2023 12

C0 C1 C2 C3 4 cores are working on a 64-
points FFT → we partially

synchronize these cores

Independent FFTs can be run in 
sequence by the same cores 
before synchronization

FFT1

FFT2

FFT3 …



Implemented kernels: Matrix-Matrix Multiplication

17-19 April 2023 13

• 4x4 output window 
maximizes the use of the RF 
in Snitch

• Parallel version is optimized 
to avoid contentions

Each core is assigned 4 rows of A

Cores are 
assigned 
columns of B 
to compute 
the output 
windows

Cores from the same tiles shift to 
avoid accessing the same group



Implemented kernels: Cholesky Decomposition

• Output matrix is computed
column by column

• At each iteration cores 
access in parallel different
rows → fold rows in the local
memory

• Two mirrored matrices are 
computed at a time by the 
same core, to increase
utilization

17-19 April 2023 14



FFT
4096-points
(16 independent

FFTs run between

barriers)

TeraPool

MemPool

single

TeraPool

MemPool

single

TeraPool

MemPool

single

MMM
(Input 1 4096x64

Input 2 64x32)

Cholesky
4x4 matrix
(16 independent

dec. Run between

barriers)

High IPC is obtained on all benchmarks

• TeraPool scales well compared
to MemPool (overhead = 
synchronization)

• LSU stalls are reduced to less
than 10% of the total
execution time

17-19 April 2023 15



Use case: 4096 subcarriers, 64 antennas, 32 
beams and 4 UEs on the same subcarrier

• The three benchmarks sum up to 0.785ms 
@1GHz 

• Further improvement from architecture
specialization

Quasi-ideal speed-up and low latency

17-19 April 2023 16



Conclusions

• Identified most computationaly complex kernels in PUSCH lower PHY

• Partial synchronization between cores of the cluster

• Reduced the LSU stalls to less than 10% of the execution time

• Achieved high speed-up and utilization → 0.785ms execution time @1GHz

17-19 April 2023 17

github.com/pulp-platform/mempool

Marco Bertuletti mbertuletti@iis.ee.ethz.ch
ETZ, Gloriastrasse 35, 8092 Zürich
@pulp_platform
@MarcoBertuletti

mailto:mbertuletti@iis.ee.ethz.ch


Thank you! Q&A

Marco Bertuletti mbertuletti@iis.ee.ethz.ch
ETZ, Gloriastrasse 35, 8092 Zürich
@pulp_platform
@MarcoBertuletti

github.com/pulp-platform/mempool

mailto:mbertuletti@iis.ee.ethz.ch

