ETH zürich Multicore Hosts in Heterogeneous Reconfigurable SoCs Maxim Mattheeuws, Björn Forsberg, Andreas Kurth, Luca Benini

BACKGROUND & MOTIVATION

Reprogrammable heterogeneous SoCs with high compute power are attractive f embedded applications, but all face a similar problem

NEW INSIGHTS

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
- 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - · Measurement-based extension with interference and worst case
 - Track ridge point

DESCRIPTION

Xilinx ZCU102

- FPGA Traffic generators (TG)
- Enabled/disabled individually
- TG1 and TG2: Shared port
- Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
- 2MiB L2 cache
- Benchmarks with varying intensities
- Memory-bound synthetic benchmark
- Synthetic benchmark: stride
- Find configuration of worst performance
- Cache misses every k-th memory access
- Intensity control to measure rooflines under growing interference

Jitter:

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s	1.00	1.00	1.00	1.00	1.00	1.00
320 MB/s	1.00	1.00	0.98	1.00	1.00	1.01
3200 MB/s	0.99	1.00	1.02	1.00	0.98	1.05
5984 MB/s	1.00	1.00	1 27	1.01	0.99	1.04
8000 MB/s	1.00	1.00	19.00	1.30	7.91	1.00

OUANTITATIVE

SUMMARY AND CONCLUSION

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B
- Determine counter-measures such as PREM[3],[4] or MemGuard[5]
- Measurement based, as opposed to model-based[2]

Operational Intensity [flop/B]

02/03/2021

Algorithm 1: stride with intensity control. Data: vectors X,Y of length n, and a scalar k

I.	STRIC	ie s=16;
2	for	i=0;i <n;i+=s do<="" th=""></n;i+=s>
3	ШĽ	for j=0; j <k; do<="" j++="" th=""></k;>
4		<pre>Y[i]+=X[i];</pre>
ŝ		end
2	and	

References

[1] S. Williams et al., "Roofline: an Insightful Visual Performance Model for Multicore Architectures," Commun. ACM, 2009.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference," in *IEEE Internat. Symp. on Workload Characterization*, 2017.

[3] R. Pellizzoni et al., "A Predictable Execution Model for COTS-Based Embedded Systems," IEEE Real-Time and Embedded Technology and Applications Symposium, 2011.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based Heterogeneous SoCs," IEEE Transactions on Computers, 2020.

[5] H. Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-Core Platforms," IEEE Real-Time and Embedded Technology and Applications Symposium, 2013.

ETH zürich Multicore Hosts in Heterogeneous Reconfigurable SoCs Maxim Mattheeuws, Björn Forsberg, Andreas Kurth, Luca Benini

BACKGROUND & MOTIVATION

Reprogrammable heterogeneous SoCs with high compute power are attractive f embedded applications, but all face a similar problem

NEW INSIGHTS

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
- 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - · Measurement-based extension with interference and worst case
 - Track ridge point

DESCRIPTION

Xilinx ZCU102

- FPGA Traffic generators (TG)
- Enabled/disabled individually
- TG1 and TG2: Shared port
- Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
- 32KiB data and instruction L1
- 2MiB L2 cache
- Benchmarks with varying intensities
- · Memory-bound synthetic benchmark
- Synthetic benchmark: stride
- Find configuration of worst performance
- Cache misses every k-th memory access
- Intensity control to measure rooflines under growing interference

ACM, 2009.

Algorithm 1: stride with intensity control.

Data: vectors X,Y of length n, and a scalar k

i stride s=16;
for i=0; i<n; i+=s do</pre>

References

[1] S. Williams et al., "Roofline: an Insightful Visual Performance Model for Multicore Architectures," Commun.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems

[3] R. Pellizzoni et al., "A Predictable Execution Model for COTS-Based Embedded Systems," IEEE Real-

[5] H. Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-

with Multi-Level Memory Interference," in IEEE Internat. Symp. on Workload Characterization, 2017.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based

Core Platforms," IEEE Real-Time and Embedded Technology and Applications Symposium, 2013.

Time and Embedded Technology and Applications Symposium, 2011.

Heterogeneous SoCs," IEEE Transactions on Computers, 2020.

Jitter:

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s	1.00	1.00	1.00	1.00	1.00	1.00
320 MB/s	1.00	1.00	0.98	1.00	1.00	1.01
3200 MB/s	0.99	1.00	1.02	1.00	0.98	1.05
5984 MB/s	1.00	1.00	1 27	1.01	0.99	1.04
8000 MB/s	1.00	1.00	19.00	1.30	7.91	1.00

QUANTITATIVE

SUMMARY AND CONCLUSION

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B
- Determine counter-measures such as PREM[3],[4] or MemGuard[5]
- Measurement based, as opposed to model-based[2]

Operational Intensity [flop/B]

02/03/2021

4

Analyzing Memory Interference of FPGA Accelerators on ETH zürich **Multicore Hosts in Heterogeneous Reconfigurable SoCs** Maxim Mattheeuws, Björn Forsberg, Andreas Kurth, Luca Benini

BACKGROUND & MOTIVATION

Reprogrammable heterogeneous SoCs with high compute power are attractive for embedded applications, but all face a similar problem

NEW INSIGHTS

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
- 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

DESCRIPTION

Xilinx ZCU102

- FPGA Traffic generators (TG)
- Enabled/disabled individually
- · TG1 and TG2: Shared port
- · Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
- · Benchmarks with varying intensities
- · Memory-bound synthetic benchmark
- Synthetic benchmark: stride
- · Find configuration of worst performance
- Cache misses every k-th memory access
- Intensity control to measure rooflines under growing interference

ACM, 2009.

Algorithm 1: stride with intensity control.

Data: vectors X,Y of length n, and a scalar k

for j=0; j<k; j++ do Y[i]+=X[i];

1 stride s=16? for i=0; i <n; i+=s do

References

[1] S. Williams et al., "Roofline: an Insightful Visual Performance Model for Multicore Architectures," Commun.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems

[3] R. Pellizzoni et al., "A Predictable Execution Model for COTS-Based Embedded Systems," IEEE Real-

[5] H. Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-

with Multi-Level Memory Interference," in IEEE Internat. Symp. on Workload Characterization, 2017.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based

Core Platforms," IEEE Real-Time and Embedded Technology and Applications Symposium, 2013.

Time and Embedded Technology and Applications Symposium, 2011.

Heterogeneous SoCs," IEEE Transactions on Computers, 2020.

Jitter:

- Maximal deviation from median
- · 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s	1.00	1.00	1.00	1.00	1.00	1.00
320 MB/s	1.00	1.00	0.98	1.00	1.00	1.01
3200 MB/s	0.99	1.00	1.02	1.00	0.98	1.05
5984 MB/s	1.00	1.00	1 27	1.01	0.99	1.04
8000 MB/s	1.00	1.00	19.00	1.30	7.91	1.00

OUANTITATIVE

SUMMARY AND **CONCLUSION**

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B
- Determine counter-measures such as PREM[3],[4] or MemGuard[5]
- Measurement based, as opposed to model-based[2]

Analyzing Memory Interference of FPGA Accelerators on ETH zürich **Multicore Hosts in Heterogeneous Reconfigurable SoCs** Maxim Mattheeuws, Björn Forsberg, Andreas Kurth, Luca Benini

BACKGROUND & MOTIVATION

Reprogrammable heterogeneous SoCs with high compute power are attractive for embedded applications, but all face a similar problem

NEW INSIGHTS

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
- 19x with real-world benchmark
- Model to characterize accelerator interference on CPU

DESCRIPTION

Xilinx ZCU102

- FPGA Traffic generators (TG)
- Enabled/disabled individually
- · TG1 and TG2: Shared port
- · Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
- · Benchmarks with varying intensities
- · Memory-bound synthetic benchmark
- Synthetic benchmark: stride
- · Find configuration of worst performance
- Cache misses every k-th memory access
- Intensity control to measure rooflines under growing interference

Algorithm 1: stride with intensity control.

Data: vectors X,Y of length n, and a scalar k

for j=0; j<k; j++ do Y[i]+=X[i];

1 stride s=16? for i=0;i<n;i+=s do

Jitter:

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	9
0 MB/s	1.00	1.00	1.00	1.00	1.00	
320 MB/s	1.00	1.00	0.98	1.00	1.00	
3200 MB/s	0.99	1.00	1.02	1.00	0.98	
5984 MB/s	1.00	1.00	1 27	1.01	0.99	
8000 MB/s	1.00	1.00	19.00	1.30	7.91	

QUANTITATIVE

SUMMARY AND **CONCLUSION**

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B
- Determine counter-measures such as PREM[3],[4] or MemGuard[5]
- Measurement based, as opposed to model-based[2]

Operational Intensity [flop/B]

- Based on the roofline model[1]
- Measurement-based extension with interference and worst case

02/03/2021

Track ridge point

DEC Meeting

References

[1] S. Williams et al., "Roofline: an Insightful Visual Performance Model for Multicore Architectures," Commun. ACM, 2009.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference," in IEEE Internat. Symp. on Workload Characterization, 2017.

[3] R. Pellizzoni et al., "A Predictable Execution Model for COTS-Based Embedded Systems," IEEE Real-Time and Embedded Technology and Applications Symposium, 2011.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based Heterogeneous SoCs," IEEE Transactions on Computers, 2020.

[5] H. Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-Core Platforms," IEEE Real-Time and Embedded Technology and Applications Symposium, 2013.

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
 - 19x with real-world benchmark

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
 - 19x with real-world benchmark
 - Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
 - 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
 - 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
 - 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
 - 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
 - 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

Analyzing Memory Interference of FPGA Accelerators on ETH zürich **Multicore Hosts in Heterogeneous Reconfigurable SoCs** Maxim Mattheeuws, Björn Forsberg, Andreas Kurth, Luca Benini

BACKGROUND & MOTIVATION

Reprogrammable heterogeneous SoCs with high compute power are attractive for embedded applications, but all face a similar problem

NEW INSIGHTS

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
- 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

DESCRIPTION

Xilinx ZCU102

- FPGA Traffic generators (TG)
- Enabled/disabled individually
- · TG1 and TG2: Shared port
- · Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
- · Benchmarks with varying intensities
- · Memory-bound synthetic benchmark
- Synthetic benchmark: stride
- · Find configuration of worst performance
- Cache misses every k-th memory access
- Intensity control to measure rooflines under growing interference

ACM, 2009.

Algorithm 1: stride with intensity control.

Data: vectors X,Y of length n, and a scalar k

for j=0; j<k; j++ do Y[i]+=X[i];

1 stride s=16? for i=0; i <n; i+=s do

References

[1] S. Williams et al., "Roofline: an Insightful Visual Performance Model for Multicore Architectures," Commun.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems

[3] R. Pellizzoni et al., "A Predictable Execution Model for COTS-Based Embedded Systems," IEEE Real-

[5] H. Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-

with Multi-Level Memory Interference," in IEEE Internat. Symp. on Workload Characterization, 2017.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based

Core Platforms," IEEE Real-Time and Embedded Technology and Applications Symposium, 2013.

Time and Embedded Technology and Applications Symposium, 2011.

Heterogeneous SoCs," IEEE Transactions on Computers, 2020.

Jitter:

- Maximal deviation from median
- · 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s	1.00	1.00	1.00	1.00	1.00	1.00
320 MB/s	1.00	1.00	0.98	1.00	1.00	1.01
3200 MB/s	0.99	1.00	1.02	1.00	0.98	1.05
5984 MB/s	1.00	1.00	1 27	1.01	0.99	1.04
8000 MB/s	1.00	1.00	19.00	1.30	7.91	1.00

OUANTITATIVE

SUMMARY AND **CONCLUSION**

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B
- Determine counter-measures such as PREM[3],[4] or MemGuard[5]
- Measurement based, as opposed to model-based[2]

Analyzing Memory Interference of FPGA Accelerators on ETH zürich **Multicore Hosts in Heterogeneous Reconfigurable SoCs** Maxim Mattheeuws, Björn Forsberg, Andreas Kurth, Luca Benini

BACKGROUND & MOTIVATION

Reprogrammable heterogeneous SoCs with high compute power are attractive fo embedded applications, but all face a similar problem

NEW INSIGHTS

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
- 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

DESCRIPTION

Xilinx ZCU102

- FPGA Traffic generators (TG)
- Enabled/disabled individually
- TG1 and TG2: Shared port
- · Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
 - · Benchmarks with varying intensities
- · Memory-bound synthetic benchmark
- Synthetic benchmark: stride
- · Find configuration of worst performance
- Cache misses every k-th memory access
- Intensity control to measure rooflines under growing interference

References

1 stride s=16? for i=0; i <n; i+=s do

[1] S. Williams et al., "Roofline: an Insightful Visual Performance Model for Multicore Architectures," Commun. ACM, 2009.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference," in IEEE Internat. Symp. on Workload Characterization, 2017.

[3] R. Pellizzoni et al., "A Predictable Execution Model for COTS-Based Embedded Systems," IEEE Real-Time and Embedded Technology and Applications Symposium, 2011.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based Heterogeneous SoCs," IEEE Transactions on Computers, 2020.

[5] H. Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-Core Platforms," IEEE Real-Time and Embedded Technology and Applications Symposium, 2013.

Injected BW | 2mm

0 MB/s

320 MB/s

3200 MB/s

8000 MB/s

Logic

HIG

FPD DMA

1.31

CPD

Injected BW | H₀₁^{TG} H₁₂^{TG}

1.17 1.12 1.11 1.12 1.12

Algorithm 1: stride with intensity control.

Data: vectors X,Y of length n, and a scalar k

for j=0; j<k; j++ do Y[i]+=X[i];

0MB/s | 1:00

320 MR/s

DisplayPort

DDR RAM

1.00

 3200 MB/s
 1.26
 1.29
 1.33
 1.21
 1.31

 5984 MB/s
 2.51
 3.01
 2.09
 2.03
 1.62

 8000 MB/s
 4.37
 6.51
 11.44
 6.22
 25.9

Cashe Coherent Is

Maximal deviation from median

- 1.2x in non-interfered case
- 10x with maximal interference

0.98 1.02 1.27 19.00 1.00

1.00

1.01

1.30

Benchmark slowdown

3mm axpy

1.00 1.00 1.00

0.00 1.00

5984 MB/s 1.00 1.00

1.00 1.00

1.00 1.00

0.1 flon/P

QUANTITATIVE

IMPACT

SUMMARY AND **CONCLUSION**

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B
- Determine counter-measures such as PREM[3],[4] or MemGuard[5]
- Measurement based, as opposed to model-based[2]

- Xilinx ZCU102
 - FPGA Traffic generators (TG)
 - Enabled/disabled individually
 - TG1 and TG2: Shared port
 - Up to 8GB/s traffic to DRAM

- Xilinx ZCU102
 - FPGA Traffic generators (TG)
 - Enabled/disabled individually
 - TG1 and TG2: Shared port
 - Up to 8GB/s traffic to DRAM

- Xilinx ZCU102
 - FPGA Traffic generators (TG)
 - Enabled/disabled individually
 - TG1 and TG2: Shared port
 - Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
 - Benchmarks with varying intensities
 - Memory-bound synthetic benchmark

3200 MB/s 5984 MB/s

8000 MB/s

- Xilinx ZCU102
 - FPGA Traffic generators (TG)
 - Enabled/disabled individually
 - TG1 and TG2: Shared port
 - Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
 - Benchmarks with varying intensities
 - Memory-bound synthetic benchmark

- Xilinx ZCU102
 - FPGA Traffic generators (TG)
 - Enabled/disabled individually
 - TG1 and TG2: Shared port
 - Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
 - Benchmarks with varying intensities
 - Memory-bound synthetic benchmark

- Xilinx ZCU102
 - FPGA Traffic generators (TG)
 - Enabled/disabled individually
 - TG1 and TG2: Shared port
 - Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
 - Benchmarks with varying intensities
 - Memory-bound synthetic benchmark

- Xilinx ZCU102
 - FPGA Traffic generators (TG)
 - Enabled/disabled individually
 - TG1 and TG2: Shared port
 - Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
 - Benchmarks with varying intensities
 - Memory-bound synthetic benchmark

- Xilinx ZCU102
 - FPGA Traffic generators (TG)
 - Enabled/disabled individually
 - TG1 and TG2: Shared port
 - Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
 - Benchmarks with varying intensities
 - Memory-bound synthetic benchmark

Description II

- Synthetic benchmark: stride
 - Find configuration of worst performance
 - Cache misses every ${\bf k}\mbox{-th}$ memory access
 - Intensity control to measure rooflines under growing interference

Algorithm 1: stride with intensity control.

Data: vectors X,Y of length n, and a scalar k

```
1 stride s=16;
2 for i=0; i<n; i+=s do
3 | for j=0; j<k; j++ do
4 | Y[i]+=X[i];
5 | end
6 end
```


Analyzing Memory Interference of FPGA Accelerators on ETH zürich **Multicore Hosts in Heterogeneous Reconfigurable SoCs** Maxim Mattheeuws, Björn Forsberg, Andreas Kurth, Luca Benini

BACKGROUND & MOTIVATION

Reprogrammable heterogeneous SoCs with high compute power are attractive for embedded applications, but all face a similar problem

NEW INSIGHTS

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
- 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

DESCRIPTION

Xilinx ZCU102

- FPGA Traffic generators (TG)
- Enabled/disabled individually
- · TG1 and TG2: Shared port
- · Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
- · Benchmarks with varying intensities
- · Memory-bound synthetic benchmark
- Synthetic benchmark: stride
- · Find configuration of worst performance
- Cache misses every k-th memory access
- Intensity control to measure rooflines under growing interference

ACM, 2009.

Algorithm 1: stride with intensity control.

Data: vectors X,Y of length n, and a scalar k

for j=0; j<k; j++ do Y[i]+=X[i];

1 stride s=16? for i=0; i <n; i+=s do

References

[1] S. Williams et al., "Roofline: an Insightful Visual Performance Model for Multicore Architectures," Commun.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems

[3] R. Pellizzoni et al., "A Predictable Execution Model for COTS-Based Embedded Systems," IEEE Real-

[5] H. Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-

with Multi-Level Memory Interference," in IEEE Internat. Symp. on Workload Characterization, 2017.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based

Core Platforms," IEEE Real-Time and Embedded Technology and Applications Symposium, 2013.

Time and Embedded Technology and Applications Symposium, 2011.

Heterogeneous SoCs," IEEE Transactions on Computers, 2020.

Jitter:

- Maximal deviation from median
- · 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s	1.00	1.00	1.00	1.00	1.00	1.00
320 MB/s	1.00	1.00	0.98	1.00	1.00	1.01
3200 MB/s	0.99	1.00	1.02	1.00	0.98	1.05
5984 MB/s	1.00	1.00	1 27	1.01	0.99	1.04
8000 MB/s	1.00	1.00	19.00	1.30	7.91	1.00

OUANTITATIVE

SUMMARY AND **CONCLUSION**

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B
- Determine counter-measures such as PREM[3],[4] or MemGuard[5]
- Measurement based, as opposed to model-based[2]

Analyzing Memory Interference of FPGA Accelerators on ETH zürich **Multicore Hosts in Heterogeneous Reconfigurable SoCs** Maxim Mattheeuws, Björn Forsberg, Andreas Kurth, Luca Benini

BACKGROUND & MOTIVATION

Reprogrammable heterogeneous SoCs with high compute power are attractive for embedded applications, but all face a similar problem

NEW INSIGHTS

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
- 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

DESCRIPTION

Xilinx ZCU102

- FPGA Traffic generators (TG)
- Enabled/disabled individually
- · TG1 and TG2: Shared port
- · Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
- · Benchmarks with varying intensities
- · Memory-bound synthetic benchmark
- Synthetic benchmark: stride
- · Find configuration of worst performance
- Cache misses every k-th memory access
- Intensity control to measure rooflines under growing interference

ACM, 2009.

Algorithm 1: stride with intensity control.

Data: vectors X,Y of length n, and a scalar k

for j=0; j<k; j++ do Y[i]+=X[i];

1 stride s=16? 2 for i=0; i <n; i+=s do

References

[1] S. Williams et al., "Roofline: an Insightful Visual Performance Model for Multicore Architectures," Commun.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems

[3] R. Pellizzoni et al., "A Predictable Execution Model for COTS-Based Embedded Systems," IEEE Real-

[5] H. Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-

with Multi-Level Memory Interference," in IEEE Internat. Symp. on Workload Characterization, 2017.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based

Core Platforms," IEEE Real-Time and Embedded Technology and Applications Symposium, 2013.

Time and Embedded Technology and Applications Symposium, 2011.

Heterogeneous SoCs," IEEE Transactions on Computers, 2020.

- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

QUANTITATIVE

SUMMARY AND **CONCLUSION**

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B
- Determine counter-measures such as PREM[3],[4] or MemGuard[5]
- Measurement based, as opposed to model-based[2]

- Jitter:
 - Maximal deviation from median

Quantitative Impact

- Jitter:
 - Maximal deviation from median

Quantitative Impact

- Jitter:
 - Maximal deviation from median

Quantitative Impact

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Quantitative Impact

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Quantitative Impact

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s 320 MB/s 3200 MB/s 5984 MB/s	1.00 1.00 0.99 1.00	1.00 1.00 1.00 1.00	1.00 0.98 1.02 1.27	1.00 1.00 1.00 1.01	1.00 1.00 0.98 0.99	1.00 1.01 1.05 1.04
8000 MB/s	1.00	1.00	19.00	1.30	7.91	1.00

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s 320 MB/s 3200 MB/s 5984 MB/s 8000 MB/s	$ \begin{array}{r} 1.00 \\ 1.00 \\ 0.99 \\ 1.00 \\ 1.00 \\ 1.00 \\ \end{array} $	1.00 1.00 1.00 1.00 1.00	1.00 0.98 1.02 1.27 19.00	$ \begin{array}{r} 1.00 \\ 1.00 \\ 1.00 \\ 1.01 \\ 1.30 \end{array} $	$ 1.00 \\ 1.00 \\ 0.98 \\ 0.99 \\ 7.91 $	1.00 1.01 1.05 1.04 1.00

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s 320 MB/s 3200 MB/s 5984 MB/s 8000 MB/s	$ \begin{array}{r} 1.00 \\ 1.00 \\ 0.99 \\ 1.00 \\ 1.00 \\ 1.00 \\ \end{array} $	1.00 1.00 1.00 1.00 1.00	1.00 0.98 1.02 1.27 19.00	$ \begin{array}{r} 1.00 \\ 1.00 \\ 1.00 \\ 1.01 \\ 1.30 \end{array} $	1.00 1.00 0.98 0.99 7.91	1.00 1.01 1.05 1.04 1.00

• Jitter:

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s 320 MB/s 3200 MB/s 5984 MB/s 8000 MB/s	$ \begin{array}{r} 1.00 \\ 1.00 \\ 0.99 \\ 1.00 \\ 1.00 \\ \end{array} $	1.00 1.00 1.00 1.00 1.00	1.00 0.98 1.02 1.27 19.00	1.00 1.00 1.00 1.01 1.30	1.00 1.00 0.98 0.99 7.91	$ 1.00 \\ 1.01 \\ 1.05 \\ 1.04 \\ 1.00 $

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s 320 MB/s 3200 MB/s 5984 MB/s 8000 MB/s	$ \begin{array}{r} 1.00 \\ 1.00 \\ 0.99 \\ 1.00 \\ 1.00 \\ 1.00 \\ \end{array} $	1.00 1.00 1.00 1.00 1.00	1.00 0.98 1.02 1.27 19.00	1.00 1.00 1.00 1.01 1.30	1.00 1.00 0.98 0.99 7.91	$ 1.00 \\ 1.01 \\ 1.05 \\ 1.04 \\ 1.00 $

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s 320 MB/s 3200 MB/s 5984 MB/s 8000 MB/s	$ \begin{array}{r} 1.00 \\ 1.00 \\ 0.99 \\ 1.00 \\ 1.00 \\ \end{array} $	1.00 1.00 1.00 1.00 1.00	1.00 0.98 1.02 1.27 19.00	1.00 1.00 1.00 1.01 1.30	1.00 1.00 0.98 0.99 7.91	$ 1.00 \\ 1.01 \\ 1.05 \\ 1.04 \\ 1.00 $

• Jitter:

- Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s 320 MB/s 3200 MB/s 5984 MB/s 8000 MB/s	$ \begin{array}{c} 1.00 \\ 1.00 \\ 0.99 \\ 1.00 \\ 1.00 \end{array} $	1.00 1.00 1.00 1.00 1.00	1.00 0.98 1.02 1.27 19.00	1.00 1.00 1.00 1.01 1.30	1.00 1.00 0.98 0.99 7.91	$ 1.00 \\ 1.01 \\ 1.05 \\ 1.04 \\ 1.00 $

Analyzing Memory Interference of FPGA Accelerators on ETH zürich **Multicore Hosts in Heterogeneous Reconfigurable SoCs** Maxim Mattheeuws, Björn Forsberg, Andreas Kurth, Luca Benini

BACKGROUND & MOTIVATION

Reprogrammable heterogeneous SoCs with high compute power are attractive for embedded applications, but all face a similar problem

NEW INSIGHTS

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
- 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

DESCRIPTION

Xilinx ZCU102

- FPGA Traffic generators (TG)
- Enabled/disabled individually
- · TG1 and TG2: Shared port
- · Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
- · Benchmarks with varying intensities
- · Memory-bound synthetic benchmark
- Synthetic benchmark: stride
- · Find configuration of worst performance
- Cache misses every k-th memory access
- Intensity control to measure rooflines under growing interference

ACM, 2009.

Algorithm 1: stride with intensity control.

Data: vectors X,Y of length n, and a scalar k

for j=0; j<k; j++ do Y[i]+=X[i];

1 stride s=16? for i=0; i <n; i+=s do

References

[1] S. Williams et al., "Roofline: an Insightful Visual Performance Model for Multicore Architectures," Commun.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems

[3] R. Pellizzoni et al., "A Predictable Execution Model for COTS-Based Embedded Systems," IEEE Real-

[5] H. Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-

with Multi-Level Memory Interference," in IEEE Internat. Symp. on Workload Characterization, 2017.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based

Core Platforms," IEEE Real-Time and Embedded Technology and Applications Symposium, 2013.

Time and Embedded Technology and Applications Symposium, 2011.

Heterogeneous SoCs," IEEE Transactions on Computers, 2020.

Jitter:

- Maximal deviation from median
- · 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s	1.00	1.00	1.00	1.00	1.00	1.00
320 MB/s	1.00	1.00	0.98	1.00	1.00	1.01
3200 MB/s	0.99	1.00	1.02	1.00	0.98	1.05
5984 MB/s	1.00	1.00	1 27	1.01	0.99	1.04
8000 MB/s	1.00	1.00	19.00	1.30	7.91	1.00

OUANTITATIVE

SUMMARY AND **CONCLUSION**

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B
- Determine counter-measures such as PREM[3],[4] or MemGuard[5]
- Measurement based, as opposed to model-based[2]

ETH zürich Multicore Hosts in Heterogeneous Reconfigurable SoCs Maxim Mattheeuws, Björn Forsberg, Andreas Kurth, Luca Benini

BACKGROUND & MOTIVATION

Reprogrammable heterogeneous SoCs with high compute power are attractive for embedded applications, but all face a similar problem

NEW INSIGHTS

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
- 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - · Measurement-based extension with interference and worst case
 - Track ridge point

DESCRIPTION

Xilinx ZCU102

- FPGA Traffic generators (TG)
- Enabled/disabled individually
- TG1 and TG2: Shared port
- Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
- Benchmarks with varying intensities
- Memory-bound synthetic benchmark
- Synthetic benchmark: stride
- Find configuration of worst performance
- Cache misses every k-th memory access
- Intensity control to measure rooflines under growing interference

Jitter:

- · Maximal deviation from median
- 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s	1.00	1.00	1.00	1.00	1.00	1.00
320 MB/s	1.00	1.00	0.98	1.00	1.00	1.01
3200 MB/s	0.99	1.00	1.02	1.00	0.98	1.05
5984 MB/s	1.00	1.00	1 27	1.01	0.99	1.04
8000 MB/s	1.00	1.00	19.00	1.30	7.91	1.00

Algorithm 1: stride with intensity control. Data: vectors X,Y of length n, and a scalar k

stride s=16; for i=0; i<n; i+=s do for j=0; j<k; j++ do | Y[i]+=X[i]; e = end

References

 S. Williams et al., "Roofline: an Insightful Visual Performance Model for Multicore Architectures," Commun. ACM, 2009.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference," in *IEEE Internat. Symp. on Workload Characterization*, 2017.

[3] R. Pellizzoni et al., "A Predictable Execution Model for COTS-Based Embedded Systems," IEEE Real-Time and Embedded Technology and Applications Symposium, 2011.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based Heterogeneous SoCs," *IEEE Transactions on Computers*, 2020.

[5] H. Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-Core Platforms," IEEE Real-Time and Embedded Technology and Applications Symposium, 2013.

SUMMARY AND CONCLUSION

QUANTITATIVE

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B

Determine counter-measures such as PREM[3],[4] or MemGuard[5]

Measurement based, as opposed to model-based[2]

Summary and Conclusion

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B
- Determine counter-measures such as PREM[3],[4] or MemGuard[5]
- Measurement based, as opposed to model-based[2]

Analyzing Memory Interference of FPGA Accelerators on ETH zürich **Multicore Hosts in Heterogeneous Reconfigurable SoCs** Maxim Mattheeuws, Björn Forsberg, Andreas Kurth, Luca Benini

BACKGROUND & MOTIVATION

Reprogrammable heterogeneous SoCs with high compute power are attractive for embedded applications, but all face a similar problem

NEW INSIGHTS

- Analyze memory interference
 - State-of-the-Art Xilinx UltraScale+
- Up to 26x performance loss
- 19x with real-world benchmark
- Model to characterize accelerator interference on CPU
 - Based on the roofline model[1]
 - Measurement-based extension with interference and worst case
 - Track ridge point

DESCRIPTION

Xilinx ZCU102

- FPGA Traffic generators (TG)
- Enabled/disabled individually
- · TG1 and TG2: Shared port
- · Up to 8GB/s traffic to DRAM
- Cortex-A53 CPU
 - 32KiB data and instruction L1
 - 2MiB L2 cache
- · Benchmarks with varying intensities
- · Memory-bound synthetic benchmark
- Synthetic benchmark: stride
- · Find configuration of worst performance
- Cache misses every k-th memory access
- Intensity control to measure rooflines under growing interference

ACM, 2009.

Algorithm 1: stride with intensity control.

Data: vectors X,Y of length n, and a scalar k

for j=0; j<k; j++ do Y[i]+=X[i];

1 stride s=16? for i=0; i <n; i+=s do

References

[1] S. Williams et al., "Roofline: an Insightful Visual Performance Model for Multicore Architectures," Commun.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems

[3] R. Pellizzoni et al., "A Predictable Execution Model for COTS-Based Embedded Systems," IEEE Real-

[5] H. Yun et al., "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-

with Multi-Level Memory Interference," in IEEE Internat. Symp. on Workload Characterization, 2017.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based

Core Platforms," IEEE Real-Time and Embedded Technology and Applications Symposium, 2013.

Time and Embedded Technology and Applications Symposium, 2011.

Heterogeneous SoCs," IEEE Transactions on Computers, 2020.

Jitter:

- Maximal deviation from median
- · 1.2x in non-interfered case
- 10x with maximal interference
- Benchmark slowdown

Injected BW	2mm	3mm	axpy	bicg	conv2d	gemm
0 MB/s	1.00	1.00	1.00	1.00	1.00	1.00
320 MB/s	1.00	1.00	0.98	1.00	1.00	1.01
3200 MB/s	0.99	1.00	1.02	1.00	0.98	1.05
5984 MB/s	1.00	1.00	1 27	1.01	0.99	1.04
8000 MB/s	1.00	1.00	19.00	1.30	7.91	1.00

OUANTITATIVE

SUMMARY AND **CONCLUSION**

- Up to 19x performance loss of real-world benchmarks
- Novel degradation characterization methodology and results
 - 1) Find worst interference configuration using stride with minimal intensity
 - 26x Performance degradation
 - 2) Measure rooflines with increasing interference using stride
 - Jitter growth from 1.2 to 10x
 - 3) Track ridge point behaviour
 - Increase from 0.1 to 5 flop/B
- Determine counter-measures such as PREM[3],[4] or MemGuard[5]
- Measurement based, as opposed to model-based[2]

02/03/2021

References

[1] S. Williams *et al.*, "Roofline: an Insightful Visual Performance Model for Multicore Architectures," *Commun. ACM*, 2009.

[2] S. Lee and C. Wu, "Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference," in *IEEE Internat. Symp. on Workload Characterization*, 2017.

[3] R. Pellizzoni *et al.*, "A Predictable Execution Model for COTS-Based Embedded Systems," *IEEE Real-Time and Embedded Technology and Applications Symposium*, 2011.

[4] B. Forsberg, L. Benini, and A. Marongiu, "HePREM: A Predictable Execution Model for GPU-based Heterogeneous SoCs," *IEEE Transactions on Computers*, 2020.

[5] H. Yun *et al.*, "MemGuard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-Core Platforms," *IEEE Real-Time and Embedded Technology and Applications Symposium*, 2013.