DESIGN, AUTOMATION & TEST IN EUROPE

01 - 05 February 2021 · virtual conference

The European Event for Electronic System Design & Test

Microarchitectural Timing Channels and their Prevention on an Open-Source 64-bit RISC-V Core

ETH Zurich

Nils Wistoff **Moritz Schneider** Frank K. Gürkaynak ETH Zurich Luca Benini **Gernot Heiser**

ETH Zurich ETH Zurich and University of Bologna UNSW Sydney and Data61 CSIRO

Security Model

Hardware platform

CVA6 RV64GC core [2] on FPGA

 $N = 10^{6}$

 $N = 10^{6}$

M = 1667.3 mb

03 February 2021

Software Mitigation: L1 D\$ Channel

Unmitigated

- 10-2 · 10⁻² Reduced Range Time (cycles) 87000 -85000 -Time (cycles) 92700 8000 Probability Probability l 10−3 - 10-3 Secret Secret $N = 10^{6}$, M = 1667.3 mb, $M_{0} = 0.5$ mb $N = 10^{6}$, M = 515.7 mb, $M_{0} = 1.1$ mb

Double L1 D\$ prime on context switch

03 February 2021

Software Mitigation: L1 D\$ Channel

Double L1 D\$ prime on context switch Unmitigated Still a channel! · 10⁻² Time (cycles) 87000 -85000 -(cycles) (cycles) 0556 Probability Probability L 10-3 We need hardware support! Secret Secret $N = 10^{6}$, M = 1667.3 mb, $M_{0} = 0.5$ mb $N = 10^6$, M = 515.7 mb, $M_0 = 1.1$ mb

03 February 2021

Temporal Fence Instruction (fence.t)

Unmitigated 88000 ↓ 10⁻² 86000 Time (cycles) 8500 - 500 Probability - 10⁻³ 80000 78000 0 32 128 160 192 224 256 64 96 Secret $N = 10^{6}$, M = 1667.3 mb, $M_{0} = 0.5$ mb

Flush targeted components on context switch

03 February 2021

88000 ↓ 10⁻² 86000 Time (cycles) 8500 - 10⁻³ 80000 78000 0 32 128 160 192 224 256 64 96 Secret $N = 10^{6}$, M = 1667.3 mb, $M_{0} = 0.5$ mb

Unmitigated

Probability

Flush targeted components on context switch

Vulnerable 2nd Order State-Holding Components

Vulnerable 2nd Order State-Holding Components

All Channels are Closed!

Context Switch Latency

Unmitigated		D\$ Softw	нพ		
Hot	Cold	Single Double		Flush	
430 (±7.0)	1,180 (±1.0)	12,099 (±52)	51,876 (±256)	1,502 (±0.9)	
				Ĵ	
	320 cvcles	s overhea	nd per cor	ntext swit	

Clk @1GHz, CS @1KHz: **+ 0.032%**

Context Switch Latency

Unmitigated		D\$ Softw	нw					
Hot	Cold	Single	Double	Flush				
430 (±7.0)	1,180 (±1.0)	12,099 (±52)	51,876 (±256)	1,502 (±0.9)				
320 cycles overhead per context switch Clk @1GHz, CS @1KHz: + 0.032%								

Hardware Costs

Conclusion

- We measure timing channels on an in-order RISC-V core (CVA6)
- We show that SW alone cannot solve the problem!
- Solution: Enable OS to flush microarchitectural state
 - We propose a temporal fence (fence.t) instruction
 - Closes all evaluated channels at negligible costs
- Need to flush *all* µArch state with possible timing impact!
- Future work
 - Evaluate performance with *write-back* L1 D\$
 - Develop systematic approach to identify vulnerable μArch state

Sources

- [1] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser: "Time Protection: The Missing OS Abstraction", EuroSys, 2019
- [2] Florian Zaruba and Luca Benini: "The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology", IEEE Trans. on VLSI Systems 27, 2019
- [3] Gerwin Klein, June Andronick, Kevin Elphistone, Toby Murray, Thomas Sewell, Rafal Kolanski, and Gernot Heiser: "Comprehensive Formal Verification of an OS Microkernel", ACM Trans. Comp. Syst. 32, 2014

DESIGN, AUTOMATION & TEST IN EUROPE

01 - 05 February 2021 · virtual conference

The European Event for Electronic System Design & Test

Microarchitectural Timing Channels and their Prevention on an Open-Source 64-bit RISC-V Core

ETH Zurich

Nils Wistoff **Moritz Schneider** Frank K. Gürkaynak ETH Zurich Luca Benini **Gernot Heiser**

ETH Zurich ETH Zurich and University of Bologna UNSW Sydney and Data61 CSIRO

Temporal Fence Instruction (fence.t)

31		12	11	7	6	0
select[19:0]		00000		0001011		
20			5		7	7

Temporal Fence Instruction (fence.t)

Covert Channel

