DESIGN, AUTOMATION & TEST IN EUROPE

01 – 05 February 2021 · virtual conference

The European Event for Electronic System Design & Test

MemPool: A Shared-L1 Memory Many-Core Cluster with a Low-Latency Interconnect

Matheus Cavalcante¹, Samuel Riedel¹, Antonio Pullini², Luca Benini¹³ matheusd *at* iis.ee.ethz.ch

> ¹ETH Zürich, Zürich, Switzerland ²Greenwaves Technologies, Grenoble, France ³Università di Bologna, Bologna, Italy

How to scale a shared-L1 Cluster to hundreds of cores

- Shared-L1 clusters are an extremely common pattern
 - Simple programming model
 - Only scales to a few tens of cores
- Our proposal: MemPool
 - Many-core cluster with 256 32-bit RISC-V cores
 - Low-latency shared view of 1 MiB of L1 memory

- Physical-aware design with GlobalFoundries' 22FDX
 - 700 MHz at typical conditions, critical path 53 gates long

3rd February 2021

MemPool's hierarchy: the Snitch core

- Ultra-small RV32IMA core
 - 44 kGE
- Functional units outside the main core pipeline
 - Pipelineable complex instructions
- Latency-tolerant memory interface

For more information, refer to arXiv:2002.10143 [cs.AR]

MemPool's hierarchy: the tile

- Four Snitch cores
- 2 KiB shared L1 instruction cache
 - 4-way set associative
 - L0 cache private to core
- 16 L1 SPM Banks
 - 16 KiB
 - Accessible from local cores within one cycle

The tile's internal interconnects

- Each tile has K ports to access banks in remote tiles
 - Traffic concentration
 - Possible throughput bottleneck!
- Remote request/response interconnects:
 - 4 × K fully-connected logarithmic crossbars
- Request and response interconnects
 - (4+K) × 16 fully-connected logarithmic crossbars

MemPool cluster: assembling the 64 tiles

- Approach #1 (Top₁)
 - K = 1 master and slave ports to access banks in remote tiles
 - Single 64 × 64 butterfly network
 - Traffic concentration bottleneck
- Approach #2 (Top₄)
 - K = 4 master and slave ports to access banks in remote tiles
 - Four 64 × 64 butterfly networks
 - Routing congestion bottleneck
 - Homogeneous 5-cycle latency

Approach #3 (Top_H): hierarchical cluster

- 16 tiles compose a group
- Tiles in the same group can be accessed within 3 cycles
- Directional ports to access remote groups
 - North, Northeast, East
 - Remote groups can be accessed within 5 cycles
 - Radix-4 16x16 Butterflies

Throughput and Latency Analysis

- Cores replaced with synthetic traffic generators
 - Uniformly random access pattern
- Top₁ saturates fast
 - Traffic concentration issue
- Top₄ and Top_H are pretty much equivalent
 - Top_H has slightly lower latency
 - Latency below 6 cycles for a load of 0.25 req/core/cycle

Benchmarks: can we compete with the impossible?

- Baseline: idealized Top_X
 - Fully connected logarithmic crossbar between 256 cores and 1024 banks
- Cycle-accurate RTL simulation
 - matmul
 - Multiplication of two 64 × 64 matrices
 - 2dconv
 - 2D Convolution with a 3 × 3 kernel
 - dct
 - 2D Discrete Cosine Transform on 8 × 8 blocks in local memory
- Top_H has a performance penalty of at most 20%, on all kernels

Back-end results: tile implementation in GF 22FDX

- Synopsys flow:
 - DesignCompiler 2019.12 for synthesis and IC Compiler II 2019.12 for PnR
- Dense and compact tile:
 - 425 μm × 425 μm (908 kGE)
 - 72.8% utilization
 - Routed with six layers
 - Four layers for above-the-tile routing

MemPool's implementation in GF 22FDX

- Two limiting factors:
 - Routing congestion:
 - 4 interconnects competing for routing resources
 - Propagation delay:
 - Wires need to cross long distances → high utilization of upper routing layers
- Top₄ is physically unfeasible
- Top_H: 4.6 × 4.6 mm macro
 - 55% of it occupied by tiles
 - 700 MHz at typical conditions

Power Analysis

- Switching activities extracted from running *matmul*
- Extraction with PrimeTime 2019.12 at typical conditions
 - 500 MHz, TT, 0.80 V, 25 °C
- Each tile consumes 20.9 mW
 - The interconnects consume 1.7 mW, <10% of the total consumption
- MemPool consumes 1.55 W
 - The tiles are responsible for 86% of that
 - The global interconnect consumes 211 mW, 14% of the total consumption

Energy Analysis (500 MHz, TT, 0.80 V, 25 °C)

• Breakdown of the energy consumption per instruction:

- Local loads consume about as much energy as a *mul*
 - About half of it, 4.5pJ, by the interconnect
- Remote loads consume twice the energy of a local load
 - Despite crossing the whole cluster, twice!

MemPool's Future

- What is working:
 - A 256-core shared L1 cluster, with all banks accessible within 5 cycles
 - Performance within 20% of the ideal baseline, on key benchmarks
 - 700 MHz at typical conditions (GF 22FDX)
- What is next:
 - Increment the core with DSP functional units
 - Develop the software environment and extend the benchmarks
 - Halide
 - Scale up the number of cores

DESIGN, AUTOMATION & TEST IN EUROPE

01 – 05 February 2021 · virtual conference

The European Event for Electronic System Design & Test

MemPool: A Shared-L1 Memory Many-Core Cluster with a Low-Latency Interconnect

Matheus Cavalcante¹, Samuel Riedel¹, Antonio Pullini², Luca Benini¹³ matheusd *at* iis.ee.ethz.ch

> ¹ETH Zürich, Zürich, Switzerland ²Greenwaves Technologies, Grenoble, France ³Università di Bologna, Bologna, Italy