

Designing Linux-capable systems using open EDA tools

Integrated Systems Laboratory (ETH Zürich)

Philippe Sauter phsauter@iis.ee.ethz.ch

Open Source Hardware, the way it should be!

PULP Platform by ETH Zürich and University of Bologna

OCCAMY
432 RISC-V cores
Chiplets
GF12nm
1GHz

Occamy: A 432-Core 28.1 DP-GFLOP/s/W 83% FPU Utilization Dual-Chiplet, Dual-HBM2E RISC-V-based Accelerator for Stencil and Sparse Linear Algebra Computations with 8-to-64-bit Floating-Point Support in 12nm FinFET

How do we manage to design projects of this size at a University?

er,* Manuel Eggimann,*
erco Ottavi,‡

In 11 years PULP team has designed more than 60 chips

A simplified view of the IC design flow

Most of open source hardware is at RTL level

We have created a sandbox to design System on Chips

Single core

- PULPino, PULPissimo
- Cheshire

- OpenPULP
- **ControlPULP**

- Hero, Carfield, Astral
- Occamy, Mempool

Accelerators and ISA extensions

XpulpNN, **XpulpTNN**

ITA (Transformers) **RBE, NEUREKA** (QNNs)

FFT (DSP)

REDMULE (FP-Tensor)

We make everything (we can) available openly

- All our development is on GitHub using a permissive license
 - HDL source code, testbenches, software development kit, virtual platform

https://github.com/pulp-platform

• Allows anyone to use, change, and make products without restrictions.

Meet Mr. Wolf (2017) in TSMC40

Win (PULP): use professional IP in our chips

- Very successful IoT processor
 - 8+1 RISC-V cores
- Power converter IP from Dolphin
 - Allowed the company to demonstrate their IP on a industry relevant design
 - RTL for the entire SoC openly available
- Design formed the basis of GAP8/9
 - By Greenwaves Technologies

Win (Dolphin): demonstrate their IP on a SoA design

Designs derived from Mr. Wolf powered our nano-drones

In the last 20 years IC Design has changed a lot

Temporex AMS 0.6 (2001) about 20 kGE

Kraken GF22 (2021) about 80 MGE

There is so much that makes up a modern SoC

User-Space Software

Kernel-Space Software

HETEROGENEOUS APPLICATION ACCELERATED KERNEL VIRTUAL MEMORY MANAGEMENT LIBRARY LINUX KERNEL PULP

HW ABSTRACTION LIBRARY DRIVER

Hardware

In a typical design, innovation is only in a limited scope

User-Space Software

Kernel-Space Software

Open-source silicon-proven SoC template helps concentrate work where it counts

Hardware

Diverse set of open source based industry collaborations

GF22 (2018)

Arnold

eFPGA coupled with a RISC-V microcontroller.

In one year from agreement to actual tapeout

GF22 (2022)

Marsellus

Heterogeneous IoT processor With Aggressive voltage scaling

DILIPHIN

Permissive open-source licensing key to our industrial relationships

Siracusa

SoC for Extended Reality visual processing

Carfield

Open-Research platform for safety, resilient and time-predictable systems

And many continue to use our work for their research

intel

VLSI Symposium 2022

AutoDMP: Automated DREAMPlace-based Macro Placement

Anthony Agnesina aagnesina@nvidia.com NVIDIA Corporation Austin, TX, USA

Austin Jiao ajiao@nvidia.com NVIDIA Corporation Santa Clara, CA, USA

I/O Drivers

Puranjay Rajvanshi prajvanshi@nvidia.com NVIDIA Corporation Santa Clara, CA, USA

Ben Keller benk@nvidia.com NVIDIA Corporation Santa Clara, CA, USA Tian Yang tiyang@nvidia.com NVIDIA Corporation Santa Clara, CA, USA

CNC RF

Energy Eff. 0.6V

LLC Energy Eff. 0.6V

Brucek Khailany bkhailany@nvidia.com NVIDIA Corporation Austin, TX, USA Geraldo Pradipta gpradipta@nvidia.com NVIDIA Corporation Santa Clara, CA, USA

1k B/slice

285 GOPS/W

1.6 TOPSW

Haoxing Ren haoxingr@nvidia.com NVIDIA Corporation

Some smaller companies you might have heard of ©

ISSCC Keynote 2020 – Nature 2020

Fig. 4) Convergence place and whether RISC V CPM, Placement coar of training a paid in the characteristic place in

Figure 7: Pre-CTS placements of the logical groups and cell densities of the MemPool Group designs using NanGate 45nm process (freq. - 333 MHz, density - 68%). Congestion (H/V): Innovus (2.65%).1.54%), AutoDMP (3.48%).

ISPD'23

Unlocking the rest of the design flow

Most designs will include some 3rd party IP

Most designs will include some 3rd party IP

The chip will contain information from the PDK of the Fab

Open PDKs are a key enabler for further development

The output (and even scripts) of EDA vendors are closed

Open-source community can develop EDA tools too!

A look into the synthesis flow in Yosys

Elaboration

Behavioral RTL to connected cells (structural)

High-level phase

- Cells are arithmetic operations
- Fuse and transform operations

```
multipy-accumulate.v
            prod;
     [15:0] acc_d, acc_q;
    acc d = acc q + prod;
                                      2 → $shift
end
always @(posedge clk) begin
                                                a2
    acc q <= acc d;
end
                                            $mul
                                              ↓ prod
                                            $add
                                            $reg
                                                acc_q
```


A look into the synthesis flow in Yosys

Elaboration

Behavioral RTL to connected cells (structural)

High-level phase

- Cells are arithmetic operations
- Fuse and transform operations

Generic gate phase

- Abstract standard cell library
- Gate-level optimizations

A look into the synthesis flow in Yosys

Elaboration

Behavioral RTL to connected cells (structural)

High-level phase

- Cells are arithmetic operations
- Fuse and transform operations

Generic gate phase

- Abstract standard cell library
- Gate-level optimizations

Technology mapping

- Performed in included tool called ABC
- High-performance logic optimization
- Mapping to standard cell library

Yosys is structured, documented and maintained

Clear structure

- 'Passes' operate on current representation
- Each pass is a file in a category (directory)

Guides for users and developers

- Starts with simple 'how to use'
- Ends with 'how do I implement a pass'

Regular contributors

- YosysHQ employs developers
- Other stakeholders also contribute often

In <1week you can learn the basics and contribute meaningful improvements

The output (and even scripts) of EDA vendors are closed

1. Floorplan

- Define size
- Place pads and macros

1. Floorplan

- Define size
- Place pads and macros

2. Power distribution

1. Floorplan

- Define size
- Place pads and macros

2. Power distribution

3. Placement

- Rough global placement
- Legalize cell positions (detailed placement)

1. Floorplan

- Define size
- Place pads and macros

2. Power distribution

3. Placement

- Rough global placement
- Legalize cell positions (detailed placement)

4. Generate clock tree

1. Floorplan

- Define size
- Place pads and macros

2. Power distribution

3. Placement

- Rough global placement
- Legalize cell positions (detailed placement)

4. Generate clock tree

5. Routing

- Plan resource utilization for each wire
- Create wires, fix violations (shorts etc)

OpenROAD: A Collection of Research Tools

Research turned into a common flow

Global place: RePlace

Global route: FastRoute

Clock tree: TritonCTS

Common openDB data structure

- Designed by industry professionals
- Documented and tested

Supporting infrastructure around it

- CLI, GUI, reporting, metrics collection etc
- Plugin system for easy extensibility

We need openness along the whole chain: RTL, EDA, PDK

We need openness along the whole chain: RTL, EDA, PDK

We need openness along the whole chain: RTL, EDA, PDK

COSCUP 35

Meet Basilisk: Open RTL, Open EDA, Open PDK

- Designed in IHP 130nm OpenPDK
 - 6.25mm x 5.50mm
 - 60MHz
 - 1.08 MGE logic, 60% density
 - 24 SRAM macros (114 KiB)
- CVA6 based SoC
 - Runs and boots Linux
- Active collaboration with

Working with open-source EDA groups to close the gap!

Basilisk is the first end-to-end open-source Linux-capable RV64 SoC

- DRAM interface & rich IO (USB 1.1, VGA, SPI, ...)
- Silicon-proven, configurable, MGE-scale design

Improved FOSS EDA flow

- SV-to-Verilog chain @ <2min runtime
- Yosys synthesis:
 - \rightarrow 1.1 MGE (1.6×) @ 77 MHz (2.3×)
 - → 2.5× less runtime, 2.9× less peak RAM
- OpenROAD P&R: tuning
 - → -12% die area, +10% core utilization

github.com/pulp-platform/cheshire-ihp130-o

Benefits of end to end openness

Research

- Easier collaboration (no NDAs)
- Reproducible results, benchmarking
- Combined impact of design and design automation

Industry

- Transparent chain of trust, sovereignty
- Lower initial cost
- Faster research → product

Education

- Increased accessibility
- No black boxes, full visibility
- Experiment with flows and tools

Education is gaining momentum

chip**ignite**

Tiny Tapeout

\$300 (currently \$150)

Croc SoC: A simple chip for students

Croc SoC: A simple chip for students

Croc is simple to understand

- Everything in one repository
- Plain SystemVerilog
- (soon) guides from students for students
- Croc is flexible

Used for ETH Zürich VLSI 2 lecture starting 2025

- Croc flow is easy to run
 - Runs on older laptops (<4GB RAM)
 - Tools in a docker container
 Works on Linux, Windows and MacOS
 - 4 Make commands from RTL to GDS

github.com/pulp-platform/croc

Final words

- We use open source because it works
 - Allows us to manage complex designs
 - Facilitates Industry/Academia Relationships
 - Creates Auditable Designs, Reproducible Results
 - Enables research into new directions

There is still more to come ©

Helps us and others concentrate work where it matters

- Open Source sees no borders
 - There is no 'European/Chinese/American Open Source',
 - There can be 'European/Chinese/American support for Open Source'

Open Source is global, it just can have more or less support in a region/country

