
pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

29th IEEE Symposium on Computer Arithmetic – ARITH2022
Virtual conference, September 12-14, 2022

MiniFloat-NN and ExSdotp: An ISA Extension and a 
Modular Open Hardware Unit for Low-Precision 
Training on RISC-V Cores

Luca Bertaccini*, Gianna Paulin*, Tim Fischer*, Stefan Mach†, Luca Benini*‡

*IIS, ETH Zurich, Switzerland, 
‡DEI, University of Bologna, Italy
†Axelera AI, Switzerland



The Exponential Growth of AI

• NN models’ memory and compute 
requirements are growing exponentially

• Technology scaling is not sufficient

• Required algorithmic and architectural
advancements to keep the progress pace 

29th IEEE Symposium on Computer Arithmetic – ARITH22 2

S. Lie, “Thinking outside the die: Architecting the ML accelerator of the future”



Algorithmic Advancements

• New low-precision data types:

• 32-bit → 19-bit → 16-bit → 8-bit 
floating-point (FP) data types

• New mixed and low-precision training
algorithms have been developed to 
exploit the resilience of NN models to 
noise

• Expanding operations in which the 
accumulation is performed in higher
precision

29th IEEE Symposium on Computer Arithmetic – ARITH22 3

• Lower memory requirements

• Opportunities for more efficient
hardware architectures

Recently explored for 
training and inference



• Fully specialized for NN 
training and inference

• Based on arrays of mixed 
precision elements

Architecture Advancements

NVIDIA H100 on SMX5 Module
(https://resources.nvidia.com/en-us-tensor-core)

FUJITSU A64FX 
(https://www.fujitsu.com)

IBM AI Chip
(https://research.ibm.com)

Hardware Specialization

• GPU architecture based on 
CUDA cores and tensor cores 
(each one capable of 1024 
dot products per cycle)

• Specialized on data parallel
computations

• HPC processor with vector
extensions

• 512-bit SIMD FPUs

29th IEEE Symposium on Computer Arithmetic – ARITH22 4



Academic Architecture for HPC - Manticore

• Manticore: a chiplet-based hierarchically-scalable architecture

• Built upon the replication of eight-core compute clusters:

• Area-optimized integer cores coupled with FP64/FP32 FPUs sharing a scratchpad memory. 

• It contains Snitch cores, enhanced with ISA extensions that allows achieving >90% FPU utilization.

• How can we extend such an architecture to exploit new algorithms for low and 
mixed-precision efficient NN training?

529th IEEE Symposium on Computer Arithmetic – ARITH22

Zaruba et al. (Manticore: A 4096-core RISC-V chiplet
architecture for ultraefficient floating-point computing)



Why are we interested in ExSdotp instructions?

• Vectorial Expanding FMA: Unbalanced
• Consumes half of rs0, rs1 and the 

whole rs2, rd
• Multiple instructions to cover all

possible source locations needed to 
use the full register file space

• Vectorial Expanding SDOTP: Balanced
• Consumes the whole rs0, rs1, rs2, rd

FP16 FP16 FP16 FP16

FP16 FP16 FP16 FP16

rs0

rs1

FP32 FP32 rs2

FP32 FP32 rd

Vectorial ExFMA aw*bw + c2w

FP16 FP16 FP16 FP16

FP16 FP16 FP16 FP16

rs0

rs1

FP32 FP32 rs2

FP32 FP32 rd

SIMD ExSdotp aw*bw + cw*dw + e2w

FP16

FP16

FP32

FP32

FP16

FP16

FP32

FP32

FP16 FP16 FP16 FP16

FP16 FP16 FP16 FP16

FP32 FP32

FP32 FP32

629th IEEE Symposium on Computer Arithmetic – ARITH22

64 bits 64 bits



Why Fused ExSdotp Units?

729th IEEE Symposium on Computer Arithmetic – ARITH22

• A cascade of two ExFMAs computes an 
expanding dot product

• Non-distributive FP addition

• Fused ExSdotp unit
• Single normalization and rounding step

ExFMA

ExFMA

ExSdotp

ExSdotp2w = aw*bw + cw*dw + e2wCascade2w = aw*bw + (cw*dw + e2w)

2wwwww

2w2w

2w

2www

ww



Contributions

1. ExSdotp unit: 

i. An open-source parameterized multi-format unit supporting expanding sum-of-dot-product 
(ExSdotp) instructions (8-to-16-bit and 16-to-32-bit), as well as non-expanding and 
expanding three-operand additions, called Vsum and ExVsum. 

ii. Integration of ExSdotp unit into an open-source multi-format FPU (FPnew1)

2. MiniFloat-NN: 

i. A RISC-V ISA extension for low-precision FP training on many-core architectures. 

ii. Integration of the enhanced FPU into an open-source RISC-V eight-core cluster based on 
Snitch2 cores. 

3. Evaluation of the standalone ExSdotp unit and the enhanced compute cluster

29th IEEE Symposium on Computer Arithmetic – ARITH22 8

1https://github.com/pulp-platform/fpnew 2https://github.com/pulp-platform/snitch



Targeted Floating-Point Formats

• ExSdotp source formats:

• FP16alt (1, 8, 7) (as bfloat16 but handling
subnormals)

• FP16 (1, 5, 10) 

• FP8alt (1, 5, 2)

• FP8 (1, 4, 3)

• ExSdotp destination formats:

• FP32 (1, 8, 23)

• FP16alt (1, 8, 7)

• FP16 (1, 5, 10)

929th IEEE Symposium on Computer Arithmetic – ARITH22

Destination Format

Source Format FP32 FP16alt FP16 FP8alt FP8

FP32 Vsum - - - -

FP16alt ExSdotp/ExVsum Vsum Vsum - -

FP16 ExSdotp/ExVsum Vsum Vsum - -

FP8alt - ExSdotp/ExVsum ExSdotp/ExVsum Vsum Vsum

FP8 - ExSdotp/ExVsum ExSdotp/ExVsum Vsum Vsum

• Subnormals handled for all combinations of formats

• A parametric design to enable fast exploration of new FP formats



Expanding Sum of Dot Product Unit

29th IEEE Symposium on Computer Arithmetic – ARITH22 10

• w = source format bit width

• 2w = destination format bit width

• ExSdotp = aw*bw + cw*dw + e2w



Expanding Sum of Dot Products Unit

29th IEEE Symposium on Computer Arithmetic – ARITH22 11

• ExSdotp = aw*bw + cw*dw + e2w



Expanding Sum of Dot Products Unit

29th IEEE Symposium on Computer Arithmetic – ARITH22 12

• ExSdotp = aw*bw + cw*dw + e2w

• Product expressed with twice as many bits 
= 2*p_src (≈ p_dst)

• Padding to reach p_dst



Expanding Sum of Dot Products Unit

29th IEEE Symposium on Computer Arithmetic – ARITH22 13

maxintmin

• ExSdotp = aw*bw + cw*dw + e2w

• Three-addend sorting to prevent precision
losses due to cancellation during the three-
term addition:

• (a + b) – a might return 0 if a is much larger than b

• Decreasing order (abs value) -> (a – a) + b = b

• Gradually increasing the internal precision to 
retain precision



Expanding Sum of Dot Products Unit

29th IEEE Symposium on Computer Arithmetic – ARITH22 14

• ExSdotp = aw*bw + cw*dw + e2w

• Three-addend sorting to prevent precision
losses due to cancellation during the three-
term addition:

• (a + b) – a might return 0 if a is much larger than b

• Decreasing order (abs value) -> (a – a) + b = b

• Gradually increasing the internal precision to 
retain precision



Expanding Sum of Dot Products Unit

29th IEEE Symposium on Computer Arithmetic – ARITH22 15

• ExSdotp = aw*bw + cw*dw + e2w

• Three-addend sorting to prevent precision
losses due to cancellation during the three-
term addition:

• (a + b) – a might return 0 if a is much larger than b

• Decreasing order (abs value) -> (a – a) + b = b

• Gradually increasing the internal precision to 
retain precision



Expanding Sum of Dot Products Unit

29th IEEE Symposium on Computer Arithmetic – ARITH22 16

• ExSdotp = aw*bw + cw*dw + e2w

• Three-addend sorting to prevent precision
losses due to cancellation during the three-
term addition:

• (a + b) – a might return 0 if a is much larger than b

• Decreasing order (abs value) -> (a – a) + b = b

• Gradually increasing the internal precision to 
retain precision



Expanding Sum of Dot Products Unit

29th IEEE Symposium on Computer Arithmetic – ARITH22 17

• ExSdotp = aw*bw + cw*dw + e2w

• Three-addend sorting to prevent precision
losses due to cancellation during the three-
term addition:

• (a + b) – a might return 0 if a is much larger than b

• Decreasing order (abs value) -> (a – a) + b = b

• Gradually increasing the internal precision to 
retain precision



Expanding Sum of Dot Products Unit

29th IEEE Symposium on Computer Arithmetic – ARITH22 18

• ExSdotp = aw*bw + cw*dw + e2w

• Three-addend sorting to prevent precision
losses due to cancellation during the three-
term addition:

• (a + b) – a might return 0 if a is much larger than b

• Decreasing order (abs value) -> (a – a) + b = b

• Gradually increasing the internal precision to 
retain precision



Non-expanding three-term addition

• Vsum = a2w + c2w + e2w

• Vsum can be used to reduce and accumulate 
the results packed in a register after SIMD 
ExSdotp executions

• Support for non-expanding three-term sum 
added by bypassing the multiplications

• All the necessary logic is already present as
the targeted ExSdotp operations were
expanding

• ExVsum is computed as an ExSdotp where
bw = dw = 1
ExVsum = aw*1 + cw*1 + e2w

29th IEEE Symposium on Computer Arithmetic – ARITH22 19



Reusing the Same Hardware for Lower-Precision Formats

• 16-to-32-bit ExSdotp unit:

• Super format between enabled input formats 
FP16, FP16alt, FP8, FP8alt

• {1, max(exp16, exp16alt), max(mant16, mant16alt)}

• Narrower exponent mapped to the lower 
bits of super format exponent 

• Narrower mantissa mapped to the upper 
bits of super format mantissa 

29th IEEE Symposium on Computer Arithmetic – ARITH22 20



Enhancing FPnew with SIMD ExSdotp

29th IEEE Symposium on Computer Arithmetic – ARITH22 21

• FPnew is a highly-parameterized open-source modular energy-efficient multi-format FPU



Enhancing FPnew with SIMD ExSdotp

29th IEEE Symposium on Computer Arithmetic – ARITH22 22

• FPnew is a highly-parameterized open-source modular energy-efficient multi-format FPU
• SIMD ExSdotp unit integrated into FPnew as a new operation group block
• SIMD SDOTP: two 16-to-32-bit units and two 8-to-16-bit units
• Up to two 16-to-32-bit ExSdotp and four 8-to-16-bit ExSdotp per cycle



Enhancing FPnew with SIMD ExSdotp

29th IEEE Symposium on Computer Arithmetic – ARITH22 23

• Parametrizable number of pipeline levels. In our specific case, we selected:
• SDOTP: 3 levels of pipeline registers
• ADDMUL: 3 levels of pipeline registers
• CAST: 2 levels of pipeline registers
• COMP: 1 levels of pipeline registers



ExSdotp & FPnew: Area and Timing

• Fused synthesis and PnR with SYNOPSYS FUSION 
COMPILER using GlobalFoundries 12nm FinFET
technology.

• Worst-case corner (0.72V, 125°C)

• The fused ExSdotp unit allows for around 30%
area and critical path reduction with respect to a 
cascade of ExFMA modules.

• The SIMD SDOTP unit occupies 44.5 kGE, 
amounting to 27% of the enhanced FPU area 
(overall FPU area = 165kGE). Synthesized 
targeting 950MHz in worst-case corner.

29th IEEE Symposium on Computer Arithmetic – ARITH22 24

30%

30%



MiniFloat-NN Compute Cluster

• Snitch cluster:

• Integer cores optimized for area and coupled
with a large and high-performance FPU, plus 
ISA extensions to achieve >90% FPU utilization.

• MiniFloat-NN capabilities added by:

• Including FPnew enhanced with SIMD ExSdotp

• Extending the decoder

• Alt formats enabled through a CSR to reduce 
the number of additional instructions

29th IEEE Symposium on Computer Arithmetic – ARITH22 25



MiniFloat-NN Cluster: Performance

29th IEEE Symposium on Computer Arithmetic – ARITH22 26

• Only GEMM sizes for which all the 
data can fit in the local 128 KiB 
scratchpad memory.

• alt-formats would only require an 
additional CSR write

• Up to 7.23x performance increase 
wrt FP64 thanks to SIMD ExSdotp
and low-precision formats

FMA-based ExSdotp-based

GEMM size
FP64

[cycles]
FP32

[cycles]
FP16

[cycles]
FP16 to FP32

[cycles]
FP8 to FP16

[cycles]

64 × 64 37.3 k 20.2 k 12.2 k 11.0 k 7.0 k

64 × 128 - 38.0 k 20.7 k 20.2 k 11.1 k

128 × 128 - - 83.9 k 80.7 k 43.2 k

128 × 256 - - - - 82.5 k

7.23x



[1] S. Mach et al., “Fpnew: An open-source multiformat floating-point unit
architecture for energy-proportional transprecision computing”

[2] W. Mao et al., “A configurable floating-point multiple-precision processing 
element for hpc and ai converged computing”

[3] H. Zhang et al., “Efficient multiple-precision floating-point fused multiply-add 
with mixed-precision support”

[4] F. Zaruba et al., “Snitch: A tiny pseudo dual-issue processor for area and 
energy efficient execution of floating-point intensive workloads”

Energy Efficiency, Accuracy, SoA Comparison

• 1 ExSdotp = 2 FMA = 4 FLOP

• Peak efficiency achieved computing GEMM

• Reported only low-precision formats. FP32 
and FP64 are supported by all the designs

• MiniFloat-NN Snitch FP8-to-FP16: 
7.2x more efficient than Snitch on FP64

2729th IEEE Symposium on Computer Arithmetic – ARITH22

Design Tech Voltage Frequency Area
Performance [FLOP/cycle] Peak 

Throughput
[GFLOPS]

Efficiency
[GFLOPS/W]FP16alt FP16 FP8 FP8alt

ExSdotp FPU 12 nm 0.8 V 1.26 GHz 0.019 mm2 8/8 8/8 16/16 16/16 20.2 (exFP8) 1631 (exFP8)

Fpnew [1] 22 nm 0.8 V 0.923 GHz 0.049 mm2 4/8 4/8 8/16 -/- 14.8 (FP8) 1245 (FP8)

Mao et al. [2] 28 nm 1.0 V 1.43 GHz 0.013 mm2 -/- -/20 -/- -/- 28.6 (FP16) 975 (FP16)

Zhang et al. [3] 90 nm 1.0 V 0.667 GHz 0.191 mm2 -/- 8/8 -/- -/- 5.3 (FP16) 113 (FP16)

MiniFloat-NN Snitch 12 nm 0.8 V 1.26 GHz 0.52 mm2 8/8 8/8 16/16 16/16 160 (exFP8) 575 (exFP8)

Snitch [4] 22 nm 0.8 V 1 GHz 0.66 mm2 -/- -/- -/- -/- 16 (FP64) 80 (FP64) 7.2x



Energy Efficiency, Accuracy, SoA Comparison

• 1 ExSdotp = 2 FMA = 4 FLOP

• Peak efficiency achieved computing GEMM

• Reported only low-precision formats. FP32 
and FP64 are supported by all the designs

• MiniFloat-NN Snitch FP8-to-FP16: 
7.2x more efficient than Snitch on FP64

2829th IEEE Symposium on Computer Arithmetic – ARITH22

Design Tech Voltage Frequency Area
Performance [FLOP/cycle] Peak 

Throughput
[GFLOPS]

Efficiency
[GFLOPS/W]FP16alt FP16 FP8 FP8alt

ExSdotp FPU 12 nm 0.8 V 1.26 GHz 0.019 mm2 8/8 8/8 16/16 16/16 20.2 (exFP8) 1631 (exFP8)

Fpnew [1] 22 nm 0.8 V 0.923 GHz 0.049 mm2 4/8 4/8 8/16 -/- 14.8 (FP8) 1245 (FP8)

Mao et al. [2] 28 nm 1.0 V 1.43 GHz 0.013 mm2 -/- -/20 -/- -/- 28.6 (FP16) 975 (FP16)

Zhang et al. [3] 90 nm 1.0 V 0.667 GHz 0.191 mm2 -/- 8/8 -/- -/- 5.3 (FP16) 113 (FP16)

MiniFloat-NN Snitch 12 nm 0.8 V 1.26 GHz 0.52 mm2 8/8 8/8 16/16 16/16 160 (exFP8) 575 (exFP8)

Snitch [4] 22 nm 0.8 V 1 GHz 0.66 mm2 -/- -/- -/- -/- 16 (FP64) 80 (FP64)

Operation Format
Relative error vs. FP64

n = 500 n = 1000 n = 2000

ExSdotp FP16-to-FP32 0 1.1 × 10-7 5.4 × 10-7

ExFMA FP16-to-FP32 7.6 × 10-7 1.8 × 10-6 9.9 × 10-7

ExSdotp FP8-to-FP16 5.9 × 10-4 2.7 × 10-3 3.9 × 10-3

ExFMA FP8-to-FP16 5.9 × 10-4 8.2 × 10-3 1.2 × 10-2

Improved Precision



Conclusion

• We presented MiniFloat-NN, an ISA extension for low-precision floating-point 
training on RISC-V cores.

• The extension is based on an open-source SIMD ExSdotp unit1 that has been
integrated into an open-source FPU.

• A MiniFloat-NN computing cluster achieves 7.23x performance speedup when
calculating on FP8-to-FP16 data with respect to FP64 computations, and 7.2x 
more energy-efficient than the baseline Snitch cluster (FP64).

29th IEEE Symposium on Computer Arithmetic – ARITH22 29

1https://github.com/pulp-platform/fpnew/tree/feature/expanding dotp



Thank you for your attention!

29th IEEE Symposium on Computer Arithmetic – ARITH22 30

pulp-platform.org@pulp_platform youtube.com/pulp_platform


