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Why does AMPERE care about energy? .b,

Green, sustainable computing
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Performance-counter-based power models — Why?

AMPERE target platforms: modern high-performance systems
= Heterogeneity, parallelism
= Dynamic voltage & frequency scaling (DVFS)

Analog power meters: slow, no introspection
= Perf. counters: close to the digital hw domain, fast, reliable
= No integration required, cheap-to-use

Architecture-agnostic, data-driven parameters selection
= Makes it flexible and platform-independent

Support for DVFS and arbitrary granularity
= With high accuracy and low overhead
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How does all this come together?

System-level power model =
= One entry for each sub-system, at each frequency
= Each entry = linear power model, driven by counters

Low overhead - still supporting heterogeneity and DVFS
Power estimates used to compute energy consumption

Sub-system
(CPU,

Sub-system’s frequency

GPU) J = DVFSstate)

-

/

(LUT[d]lf]

dl fal T fal o

d2 fa; fa) far

dN fan far fa fa

Look-up Table

@#

Combined
model

Each entry =
linear power model
driven by counters
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Our holistic model building methodology ‘.’

1.

Workloads selection
= Coverage of all sub-systems
= Broad coverage of each sub-system’s behaviors

One-time platform characterization

= Autonomous, statistical selection of the best hardware
counters to use as model parameters, for a given platform

Training and building of the LUT

= Linear power models
= Per sub-system (CPU, GPU, ...)
= Per sub-system’s frequency
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Platform characterization

= Statistical data-driven approach

One time per platform

No architectural knowledge
required, flexible

= Procedure

1.
2.

Profile (all) counters & power
Compute PCC

Person Correlation Coefficient

Select best counters

Fine-tune trade-off between number of
counters (i.e., model overhead) and
accuracy

power

) | o

= counter 7 s power

= counter 8

counter 9 m
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Time
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power

counter 2

counter 1
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Experimental setup — NVIDIA Jetson AGX Xavier

= 8-core 64-bit ARM SoC
= Per-cluster DVFS
= 29 nominal frequencies
= 115MHz-2.3 GHz
= 512-core NVIDIA Volta GPU
= 14 nominal frequencies
= 115MHz-1.4 GHz
= 2 on-board power monitors (INA3221)
= Analog current sensors
= Useful to build better models

CPU COMPLEX

Carmel

N

Carmel

2MB L2

Source: https://developer.nvidia.com/blog
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Example case study: CPU platform characterization

Fixed clock cycle
counter

Always available by default
Best 3 PMCs

@ each frequency

Per-cluster DVFS:
same counter for
each core

PCC
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Example case study: CPU model validation “,

730 MH
= Power tracked overtime Instantaneous CPU power /_ZJ
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Combined system-level model validation

Instantaneous system power

= |nstantaneous power avg

——— Measured total

error - ~7.5% 6 - —— Estimated total
= Total energy estimation 4
error =~1.3% B
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Energy modelling in the multi-criteria optimization
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Energy modelling in the multi-criteria optimization
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Energy modelling in the multi-criteria optimization

Power modelling LUT[d][f4]
dl i fal T fat fal
Platform Train & validate q, W R -
characterization power models g ~
d Fan fad fa2 fag \
device-wise, begt counters device-wise, N \
frequency-wise correlating with power frequency-wise

Optimization loop
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