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Why does AMPERE care about energy? 

 Green, sustainable computing 

 Limited energy budget 

 Application-dependent 

 AMPERE use cases 
(automotive: battery-powered) 

 Optimize energy consumption 
and monitor it 

 We are in the post-Dennard-
scaling era 

 Energy efficiency is the cost-
effective way to get higher 
performance 

Duranton, Marc, et al. "HiPEAC Vision 

2021: high performance embedded 

architecture and compilation." (2021). 
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Performance-counter-based power models – Why? 

 AMPERE target platforms: modern high-performance systems 

 Heterogeneity, parallelism 

 Dynamic voltage & frequency scaling (DVFS) 

 Analog power meters: slow, no introspection 

 Perf. counters: close to the digital hw domain, fast, reliable 

 No integration required, cheap-to-use 

 Architecture-agnostic, data-driven parameters selection 

 Makes it flexible and platform-independent 

 Support for DVFS and arbitrary granularity 

 With high accuracy and low overhead 
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How does all this come together? 

 System-level power model = Look-up Table 

 One entry for each sub-system, at each frequency 

 Each entry = linear power model, driven by counters 

 Low overhead – still supporting heterogeneity and DVFS 

 Power estimates used to compute energy consumption 
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Our holistic model building methodology 

1. Workloads selection 

 Coverage of all sub-systems 

 Broad coverage of each sub-system’s behaviors 

2. One-time platform characterization 

 Autonomous, statistical selection of the best hardware 
counters to use as model parameters, for a given platform 

3. Training and building of the LUT 

 Linear power models 

 Per sub-system (CPU, GPU, …) 
 Per sub-system’s frequency 
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Platform characterization 

 Statistical data-driven approach 

 One time per platform 

 No architectural knowledge 
required, flexible 

 Procedure 

1. Profile (all) counters & power 

2. Compute PCC 
Person Correlation Coefficient 

3. Select best counters 
Fine-tune trade-off between number of 
counters (i.e., model overhead) and 
accuracy  

power 

R² = 0.4697 

p
o

w
e

r 

counter 1 

R² = 0.5454 

p
o

w
e

r 

counter 2 

… 

counter 1 
counter 2 
counter 3 

counter 4 
counter 5 
counter 6 

counter 7 
counter 8 
counter 9 



7 27/06/2023 

Experimental setup – NVIDIA Jetson AGX Xavier 

 8-core 64-bit ARM SoC 

 Per-cluster DVFS 

 29 nominal frequencies 

 115 MHz – 2.3 GHz 

 512-core NVIDIA Volta GPU 

 14 nominal frequencies 

 115 MHz – 1.4 GHz 

 2 on-board power monitors (INA3221) 

 Analog current sensors 

 Useful to build better models Source: https://developer.nvidia.com/blog  

https://developer.nvidia.com/blog


8 27/06/2023 

0.48

0.5

0.52

0.54

0.56

0.58

0.6

730 MHz 1.2 GHz 2.3 GHz

P
C

C
 

DVFS state 

Cycle counter

Exception taken

Instruction

retired
FP activity

SIMD activity

Speculative

branch
Speculative load

Speculative L/S

L1 I$ access

L1 D$ access

Data memory

read

Example case study: CPU platform characterization 

 Fixed clock cycle 
counter 
Always available by default 

 Best 3 PMCs 
@ each frequency 

 Per-cluster DVFS: 
same counter for 
each core 
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Example case study: CPU model validation 

 Power tracked overtime 

 Instantaneous avg power error 
~4% over all frequencies 

 Total energy estimation error 
~4% over all frequencies 
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Combined system-level model validation 

 Instantaneous power avg 
error = ~7.5% 

 Total energy estimation 
error = ~1.3% 

CPU: 1.2 GHz 

GPU:  829 MHz 

Instantaneous system power 
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Energy modelling in the multi-criteria optimization 
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