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We propose a solution to detect driver’s drowsiness using a  Temporal 
Convolutional Network (TCN)

▪ Based on PPG signal collected in an unobtrusive way

▪ Validated on 16 subjects in a realistic driving simulator

▪ Deployed onto a parallel ultra-low-power MCU to ensure embedded 
real-time operation
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1. Background
▪ Motivation
▪ PPG signal
▪ KSS scale  

2. Proposed setup
▪ Dataset collection
▪ PPG data acquisition
▪ A TCN to classify driver’s state deployed on GAP9 ULP SoC 

3. Experimental results
▪ Classification accuracy
▪ Profiling on MCU

4. Conclusions
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Outline



• Drowsiness and fatigue are one the most 
important cause of car accidents1

• Direct measurement of sleep and wake states 
primarily relies on EEG

• Photoplethysmography  (PPG) can be used  for 
non-invasive assessment of the autonomic 
nervous system and as an unobtrusive indirect 
method to detect driver’s drowsiness

• PPG is an optical-type signal, based on an LED-
diode pair, that measures the change in blood 
volume in the microvascular bed
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Background

1World Health Organization. Global status report on road safety 2018: summary. Technical report, World Health Organization,2018.
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▪ KSS is a 9-point scale to 
measure the level of 
drowsiness using a self-report 
questionnaire

▪ KSS scores as the ground truth 
labels for our classification 
model, binarized into two 
classes, Alert and Drowsy

▪ 1-6 score -> Alert ; 7-9 score -> 
Drowsy

Karolinska Sleepiness Scale - KSS
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ANGELS1 acquisition system:
• Two PPG probes integrated into the 

steering wheel
• 1Ksps dual PPG channels
• IR and RED LED and a SiPM to acquire PPG 

data 

Maserati Driver-In-the-Loop Driving Simulator:
• Real vehicle cockpit
• Immersive experience
• Realistic simulator environment 

Data Collection

1Amidei, Andrea, et al. "ANGELS-Smart Steering Wheel for Driver Safety." 2023 9th International Workshop on 
Advances in Sensors and Interfaces (IWASI). IEEE, 2023
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Experimental protocol:
• Night-time recording sessions with the simulation room maintained 

completely dark and sound-isolated
• Highway driving scenario with light traffic
• Tablet inside the cockpit to report the KSS score every 5 minutes
• The recording time was not fixed, but the driving sessions ended when 

the driver fell asleep, or the driving style became very dangerous

Final dataset:
• 21 subjects (7 of them as a direct contribution of this work)
• A total of 22h of recordings
• 5 subjects excluded (no sign of drowsiness)

Data Collection
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Input: 2x2400 
• One PPG channel (left hand) downsampled

at 20sps
• Window of 2 minutes with a step size of 30s
• Driving time DT(t) = 1 − e−t/τ where the 

time constant τ is heuristically set to 2 h.

Features extractor
Features aggregator 

TEMPONet1 architecture adapted for drowsiness detection.

1M. Zanghieri et al., “Robust real-time embedded EMG recognition frame-work using temporal convolutional networks on a multicore IoT processor,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 14, no. 2, pp.244–256, 2020.
2https://transport.ec.europa.eu/transport-modes/road/social-provisions/driving-time-and-rest-periods_en

DT saturates at ∼ 9 h, which is the driving limit 
recommended by EU regulations2

TCN Architecture



9

GAP91 SoC

To test the feasibility of our model in a real 
driving application, we deployed our model 
on GAP93

• 9-core RISC-V compute cluster

• an AI accelerator

• single-core RISC-V controller

Deployment steps

Trained
model

Post training 8-bit 
quantization

NNTool + Autotiler C code of the 
network

1https://greenwaves-technologies.com/gap9 processor/
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All the experiments were conducted on 16 subjects 
(5 subjects excluded because of class unbalance)

Avg ± Std

F1 Score FP32 77.30% ± 15.26%

INT8 77.80% ± 14.83%

Accuracy FP32 77.03% ± 14.75%

INT8 76.93% ± 14.40%

No significant drop using 
int8 quantization 

We evaluate our model using a 
LOSO cross-validation scheme with 
16 folds. Each fold contains 13 
subjects for training, 2 subjects for 
validation, and 1 subject for the 
test.

Higher accuracy wrt other 
SoA PPG-based approach

Experimental Results
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We extend our analysis by arranging the original reported KSS scores into three 
groups—alert (1–4), hypovigilant (5–6) and drowsy (7–9)—and evaluating the 
binary predictions for each of them.

Experimental Results

▪ We compute the accuracy of the model’s predictions against the 
three groups, and we obtain a 91.42% of accuracy for alert, a 68.63%
of accuracy for hypovigilant and a 83.48% of accuracy for drowsy.

▪ We obtain a false positive ratio (FPR) of 8.21% for alert, a FPR of 
32.43% for hypolvigilant and a false negative ratio (FNR) of 13.92%
for drowsy.
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Heightened variability and lower median accuracy 
in the hypovigilant state

We further divide the hypovigilant and drowsy groups into their original KSS scores 
(i.e., 5–9), and we evaluate the model’s predictions

Significant variability in the accuracy on score 6

Experimental Results
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Frequency [Mhz] 240.00

Voltage [v] 0.65

L1 [kB] 63.16

L2 [kB] 29.51

Flash[kB] 24.71

Parameters [#] 24.07k

OPs 1.51M

Inference Time [ms] 4.83

Energy/Inference 
[µJ] 117.40

Accuracy 76.93 %

The network requires 1.51 MOPs to be executed, 
resulting in a time per inference of 4.83 ms, totally 
compatible with the online constraint of a new 
prediction every 30 s, and an energy consumption 
of only ∼ 117 μJ1.

1The energy consumption is referred only to the processing part, not considering the acquisition 

Deployment on GAP9



• The proposed model achieves a SoA average cross-validated accuracy of 77.60% 
across 16 subjects

• Our model is able to effectively reduce the number of false alarms when the driver 
is clearly awake, as evidenced by our low FPR of 8.21% in the alert group

• The proposed approach can be integrated with others, e.g., based on driving 
events, to further reduce the FNR

• Leveraging the computational capabilities of the GAP9 processor opens avenues 
for system scalability, potentially exploring the integration of other types of sensors
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Conclusions



Thanks for your attention
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