RISC-\VV
:’A SUMMIET

MiniFloat-NN: A RISC-V ISA Extension

for Low-Precision NN Training

Luca Bertaccini (ETH Zurich)

@pulp_platform

* |p-platform.org :
& pu THE
L] tinux

» youtube.com/pulp_platform

The Rapid Growth of Al

Memory and compute requirements - NN mOdeIS memory and ComPUte

om0 = = requirements are rapidly growing
e MSFT-1T (1T)

ML (p30B) = Technology scaling is not sufficient
® GPT-3 (175B)

10,000

1,000 e T5(11B)

o I-NLG (17B)
e Megatron-LM (8B)
e GPT-2(1.5B)

100

o BERT Large (340M)
©BERT Base (110M)

Total training compute, PFLOP-days

1 10 100 1,000 10,000 100,000

Model memory requirement, GB = ReqU|red a|gorlthmIC and arChIteCtura|
B T , advancements
S. Lie, “Thinking outside the die: Architecting the ML accelerator of the future
LINUX
ETH:zirich D SO ATHR ATRBIRNY 1 L JEINUX

Algorithmic Advancements

= New low-precision data types: FP32 8
= 32-bit > 19-bit > 16-bit > 8-bit TF32

floating-point (FP) data types bfloat16 _

DLFloat

FP16

OnIy few mantissa
FP8alt bits

= New mixed and low-precision training

= Opportunities for more efficient algorithms have been developed to exploit the
hardware architectures ‘ resilience of NN models to noise

= Lower memory requirements

= Wide interest for standardization = Expanding/Widening operations in which the
(RISC-V FP SIG, IEEE P3109) accumulation is performed in higher precision

THE

mz‘jriCh §E LNl]\l]I\II](I[ILtJ\H\ 2L FLO!Jm)}Au‘Hé

Application-Specific Optimizations

= The more an architecture is specialized, the
narrower the application scenarios in which it
represents an attractive solution

= General-purpose RISC-V CPUs can be
extended with domain-specific ISA extension:

= Opportunities for deeply optimizating the
efficiency of the processing element in a large
manycore system

= Without compromising the baseline standardized
ISA

L ALMA MATER STUDIO I{UM
S UNIVERSITA DI BOLOGNA

ETH:zurich

Application-Specific optimization provides
better performance-per-Watt

ﬂ

— Domain Specific

Performance/Watt

</
General

— Purpose
CPU

Applications

[AMD Naffziger ISCAS22] THE
3 Lo LINUX

FOUNDATION

Building an HPC RV System Extended for Efficient Training ‘;w

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to
hierarchically
replicate to build

Set of instructions
and formats to
efficiently compute

HPC RV manycore NN workloads
systems
THE
ETHzurich @0 st 4 L. JEINUX

Building an HPC RV System Extended for Efficient Training ‘;@

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to
hierarchically
replicate to build

Set of instructions
and formats to
efficiently compute

Hardware
functional unit and

HPC RV manycore NN workloads system integration
systems
THE
ETHzirich 0 swaemansi 4 L JLINUX

Chiplet 1

Chiplet 3

TRRREER

Wil KiW AR MW RN WKW I

HUHHEHI BN W i I ’ I / / \ \
Zaruba et al. (Manticore: A 4096-core RISC-V chiplet ‘ _ \

architecture for ultraefficient floating-point computing)

= Manticore: a chiplet-based hierarchically-scalable architecture

= Linux-capable host + large manycore accelerator built upon the replication of efficient L1-shared
compute clusters

THE

MATER STUDIORUM LINux

LSITA DI BOLOGNA 5 L FOUNDATION

ETH:zurich

A
w UNIVE

Efficient RISC-V Compute Clusters: Scalar + Parallel

Snitch Cluster

FPU

Manticore cluster: Snitch compute cluster*
512

}

64

= Small integer scalar 32b cores coupled with Bank 0

large SIMD FPUs (FP64, FP32) sharing a
scratchpad memory

H

L1 Shared IS

= |SA extensions that implicity encode
loads/stores to register reads/writes + loops
handled in HW = ~90% FPU utilization

FPU

L1 SPM
AEEEEEEEEEEEEEEEEEEEEEEEEEEEEEnnnnnd

= Need for narrow FP formats and expanding
instructions to efficiently tackle mixed, low-
precision NN training

FPU

H

‘ External AXI port

THE

Bl SN STURIOERN *https.//github.com/pulp-platform/snitch 6 L= !55!%%%8&

ETH:zurich

Building an HPC RV System Extended for Efficient Training ‘Z’w

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to
hierarchically
replicate to build

Set of instructions
and formats to
efficiently compute

Hardware
functional unit and

HPC RV manycore NN workloads system integration
systems
THE
ETHzurich @0 st 5 L JLINUX

Without Mixed-Precision Capabilities

In the case of no mixed-precision support:

If the application can work on FP16/FP16ALT
inputs but accumulation in FP32 required:

= FP16 with accumulation on FP32 requires
additional conversion which affects the
performance

= An FP32 kernel can be used

<configure loop>
Loop:

simd_fmacc.s fa@, fto, ftil }N
EndLoop:

<reduction>

THE

s L LINUX

FOUNDATION

e .
mz rl h LMA MATER STUDIORUM
INIVERSITA DI BOLOGNA

Without Mixed-Precision Capabilities

= SIMD FP32 FMA

In the case of no mixed-precision support:

If the application can work on FP16/FP16ALT
inputs but accumulation in FP32 required:

= FP16 with accumulation on FP32 requires
additional conversion which affects the
performance

= An FP32 kernel can be used

SIMD FMA FMA: a,*b,, +c,
FP32 FP32 fto
FP32 FP32 ftl
FP32 FP32 fa0
\)\ ¢
64 bits
ETH:zurich MO AT STURIRN

<configure loop>
Loop:

simd_fmacc.s fa0, fto, ftil }N
EndLoop:

<reduction>

THE

s L LINUX

FOUNDATION

P

SIMD Expanding Sum of Dot Product for Mixed Precision 6@

= With SIMD ExSdotp, 2x FLOP per cycle

= Same perf as SIMD FP16 FMA but more accurate SeEnrlgre dovps

Loop:

SIMD ExSdotp | Exsdotp: a,*b,, + ¢, *d,, +e,, exsdotp.s.h fa@, fto, ftil }le
EndLoop:

FP16 | FP16 | FP16 | FP16 ft0 vsum.s fal, fa@ #reduction

FP16|[|FP16 | FP16| || FP16 | | ft1
(%) 9 (Y (%)

O)
O O
FP32 FP32 fa0
| ¢ Y J
64 bits

THE
MA MATER STUDIORUM LINux
NIVERSITA DI BOLOGNA 9

FOUNDATION

ETH:zirich

P

SIMD Expanding Sum of Dot Product for Mixed Precisi_on &

= With SIMD ExSdotp, 2x FLOP per cycle

= Same perf as SIMD FP16 FMA but more accurate CERMVIEUFE OG>

Loop:
SIMD ExSdotp | Exsdotp: a,*b,, + c,*d, +e,, exsdotp.s.h fa@, fte, fti } N/2
EndLoop:
FP16 | FP16 | FP16 | FP16 ft0 vsum.s fal,fal@ #reduction
FP16| || FP16 | FP16| |] FP16 ftl Veurn TS B B B
(%) (%) (%) (%) — FP32 FP32 fa0
@ @® ' G
() ()
FP32 FP32 fa0 [—— 00...0 FP32 fal
L N v y) | | v V)
64 bits 64 bits

THE

LINUX

MATER STUDIORUM I
T OLOGNA FOUNDATION

ETH:zirich

ExSdotp Offers Further Benefits

» Fused ExSdotp unit
= Single normalization and rounding step
= QOpportunity to mitigate issues related

to the non-associativity of the two
consecutive additions

ETH:zurich

MA MATER STUDIORUM
NIVERSITA DI BOLOGNA

b

ExSdotp

iz.”

ExSdotp,,, =a,*b, +c,*d, +e,,

THE
10 Ll LINUX

Targeted Floating-Point Formats

FP32
FP16alt
FP16
FP8
Alternate formats are
FPgalt

enabled by FCSRs to
reduce the number of

= A parametric design to enable fast exploration of new FP formats e,

= ExSdotp source formats:

» FP16alt (1, 8,7) = ExSdotp destination formats:
- FP16 (1,5, 10) = FP32(1,8,23)

= FP8alt (1, 5, 2) = FP16alt (1, 8,7)

= FP8(1,4,3) = FP16 (1, 5,10)

THE

T *Subnormals handled for all combinations of formats 11 L !55!}5}\!,35

LMA MATER STUDIO
UNIVERSITA DI BOLOC

ETH:zurich

Building an HPC RV System Extended for Efficient Training &b

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to
hierarchically
replicate to build

Set of instructions
and formats to
efficiently compute

HPC RV manycore NN workloads
systems
THE
ETHzurich @0 st 12 L JLINUX

ExSdotp Unit

ExSdotp: an open-source* parameterized multi-format
unit supporting ExSdotp and three-term additions
(Vsum, ExVsum)

THE

ETH:zurich *https.//github.com/openhwgroup/cvfpu/tree/feature/expanding_dotp 13 I'l Sy

”- =2 LMA MATER STUD
] NIVERSITA DI BOLOGNA

Expanding Sum of Dot Product Unit

= w = source format bitwidth; ps = source format mant bits
aw I:’w cw dw e2w
= 2w = destination format bitwidth; pd = destination format mant bits
ps pSs ps ps
= ExSdotp =a,*b,+c,*d,+e,, o od pd
Three-addend sorting
min
2pd+3 2pd+3
2pd+ps+4

2pd+ps+5

Normalization & Rounding
THE

T
 DRIAMATER STYRISRYM Mantissa dataflow |14 L. EBB'N%,H@,S

ETH:zurich

Expanding Sum of Dot Product Unit

Issues arising in a single DOTP instruction (2 sums):

Cancellation: Three-addend sorting to prevent precision

losses due to cancellation during the three-term addition:

= (a+b) - amight return 0 if ais much larger than b
= Decreasing order (abs value) ->(a—-a)+b=b

Small quantities lost in the second addition: Gradually
increasing the internal bitwidth to retain precision

Issues arising in long summations:

Stagnation: Stochastic rounding mitigates stagnation,
where long sum of small quantities are lost to rouding

ETH:zirich

MATER STUDIORUM
RSITA DI BOLOGNA

W cw dw e2w

pd pd pd

min
2pd+3 2pd+3
2pd+ps+4
2pd+ps+5
Normalization & Rounding
T

THE

Mantissa dataflow |15 L. 4EINUX

Expanding Sum of Dot Product Unit

= w = source format bitwidth

= Support for non-expanding three-term sum added by
bypassing the multiplications

= All the necessary logic is already present as the
targeted ExSdotp operations were expanding ——— o ———— $ Pl= = = = = - — -

a,, b,l| |c e
= 2w = destination format bitwidth
ps ps ps ps
= ExSdotp =a,*b,+c,*d,+e,, I RN PR PR
= ExVsum =a,*1+c,*1 +e,, : |
- I
= Vsum =a,,* Cy, €y, | il
I I
I I
= ExVsum/Vsum to reduce and accumulate the results :Zpd+3 I
packed in a register after SIMD ExSdotp executions : I
I 2pd+ps+4
I
: I
I
I I
I I

THE

16 Lo LINUX

FOUNDATION

ETHziirich B I STURIBNNY Mantissa dataflow

Enhancing CVFPU with SIMD ExSdotp

64 64 64
FPU

Operands distribution

2222 22

Operation ~ Operation
Group Group

COMP CAST

v

Round-robin output arbitration

4

= CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU

THE
ETH:zurich 1 swaanssss 7L I LINUX

Enhancing CVFPU with SIMD ExSdotp

64 64 64 A 64 64 64
FPU SDOTP \ 4

Operands distribution Unpacking

u AT

Operation Operation Operation
GI'OUP GI'OUP GI'OUP 16-t0-32 16-to-32 YVYVYYY YVYVYVYY
ExSdotp ExSdotp 8-to-16 8-to-16
COMP CAST SDOTP ExSdotp ExSdotp
Round-robin output arbitration Packing

64{ 64{
= CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU
= SIMD ExSdotp unit integrated into CVFPU as a new operation group block
= Parametrized pipeline levels
= SIMD SDOTP: two 16-to-32-bit units and two 8-to-16-bit units - Up to two 16-to-32-bit ExSdotp and four
8-to-16-bit ExSdotp per cycle THE
ETHzirich 0 sweawssnsieesy 17 Lo EINUX

IVERSITA DI BOLC)L NA

FOUNDATION

Enhancing CVFPU with SIMD ExSdotp

64 64 64 A 64 64 64
FPU ADDMUL \ 4

Operands distribution Unpacking

22 22 AR A e 222

Operation Operation Operation
Group Group Group
ComP CAST SDOTP
Round-robin output arbitration Packing

64{ 64{
= CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU

= SIMD FMA
»= As proposed in https.//iis-git.ee.ethz.ch/smach/smallFloat-spec

THE
ETH:lrich TR STV RI0E R L I LINUX

ExSdotp & CVFPU: Area and Timing

= |Implemented in GlobalFoundries 12nm FinFET

technology

- kd
= Max Frequency - 1.24GHz (typ 0.8V, 25 °C) FPU - Area Bré,_amis?wn

i 0
SDOTP 1%
27%

- The SIMD SDOTP unit occupies 44.5 kGE— -Pua
amounting to 27% of the enhanced FPU area (overall
FPU area = 165kGE).
= Full extension introduced less than 15% area ‘;23/1 _7
overhead at a cluster level O Te%
THE
ETHzirich 1 swasanass 19 ll:l LINUX

MiniFloat-NN Cluster: Performance and Efficiency

FLOP/cycle

128 FMA-based
112

0 GEMM

80

64

48

32 I I

16

‘m N
fp64 fp32 fp16 fp16->fp32 fp8->fp16
B 64x64 m64x128 128x128 m 128x256
THE
ETHziUrich 0 s 20 ke I LINUX

MiniFloat-NN Cluster: Performance and Efficiency

FLOP/cycle

128 FMA-based ExSdotp-
112
96 GEMM based
80 GEMM
64 0 FPE======
48 |
; I| .
o m i :

fp64 fp32 fp16 fp16- >fp32: fp8->fp16

m 64x64 l64x128 128x128 m 128x256

Same performance at a higher accumulation precision

THE
ETH:lrich BRI STYR ISR 20 L I LINUX

MiniFloat-NN Cluster: Performance and Efficiency

FLOP/cycle
128 FMA-based ExSdotp-
112 b d
95 GEMM ase
80 GEMM
64
48
32 IIIIII II IIIIIII I IIIII 1 1 ° 9x
16
|
fp64 fp32 fp16 fp16->fp32 fp8->fp16
H64x64 ™ 64x128 128x128 m 128x256
1 THE
‘1 ' ':‘\‘\—A MA MATER STUDIORUM LINux
E'HZUFICh "?;EE LJWNIV] RSITA DI BOLOGNA 20 L FOUNDATION

MiniFloat-NN Cluster: Performance and Efficiency

FLOP/cycle
128 FMA-based ExSdotp-
112
96 GEMM based
50 GEMM
64
32 I I
lg o I
fp64 fp32 fp16 fp16->fp32 | fp8->ip16 |

m64x64 m64x128 128x128 m 128x256

Up to 7.2x performance and more than 7.5x energy efficiency
improvement with respect to FP64 computation (<15% area
overhead on the entire cluster) + reduced memory footprint

THE

ETHzirich @0 swenrsrisssn 00 L JLINUX

FOUNDATION

Late-Breaking Results: ExSdotp in the Vector Extension &

vfwmacc.vv vo, vl, v2 Vectorial EXFMA
VeZW[i] += Vlw[i] * Vzw[i]

[00..0 [FP16]FP16]mmmpy
" Mixed-precision support [00.0 [rriclrricl===p{ FP|J P=—»[Fr32 [P32 |
= Lower memory footprint
= Still Expanding FMA underutilize the FPU [P32 T 32]=—p
bandwidth
= We can provide the FPU with more data
and compute more every cycle Vectorial ExSdotp
vfwdotp.vv vO,vl,v2 . [FP16]FPI6]FPL6]FP 6] memmes)y
vOy,[1] += VlW[ZJj] : VZW[Z:!'] t [EPiclrpiclpiclrpicl=———p FP|J p=—»[Fr32_1 P32]
vl [2i+1] v2, [2i+1] e - —
THE
ETHzirich 1 s 21 nﬁaﬂﬂ)ggﬁ

Spatz: a Compact RISC-V Vector Processing Element &

Spatz Cluster k

Spatz — a compact vector processor conceived
as an alternative building block for the Manticore
architecture

= Small latch-based Vector Register File

L1 SPM

= ~95% FPU utilization, SIMD FPUs (FP64-FP8)
with ExSdotp support

EEE _ EEEEEEEEEEEEEE_ENEEEEEEN. IENEER
AN EEEEEEEEEEEEEEEEEEEEEEEEEEN

‘ External AXI port

‘ Cavalcante, M., Wiithrich, D., Perotti, M., Riedel, S., & Benini, L.: Spatz: A Compact Vector THE
R O MATR STURIORUM Processing Unit for High-Performance and Energy-Efficient Shared-L1 Clusters.”, ICCAD 2022 59 L %OB%/&%%
(https://arxiv.org/abs/2207.07970)

ETH:zurich

fp32 fp16->fp32 fp16->fp32
(FMA) (exFMA) (ExSdotp)

Around 2x higher performance with ExSdotp at 1.5x energy efficiency

THE

ETH:zurich 1 swaanssss 03 L JLINUX

References

Bertaccini, L., Paulin, G., Fischer, T., Mach, S., Benini, L.:
MiniFloat-NN and ExSdotp: An ISA Extension and a Modular Open Hardware Unit for Low-
Precision Training on RISC-V Cores.

ARITH22
(https://arxiv.org/abs/2207.03192)

github.com/openhwgroup/cvfpu/tree/feature/expanding dotp O

THE
ETH:lrich AT STURISR L I LINUX

P RISC-V
L1l

@pulp_platform .o+ pulp-platform.org » youtube.com/pulp: platform
-2

	Slide 1
	Slide 2: The Rapid Growth of AI
	Slide 3: Algorithmic Advancements
	Slide 4: Application-Specific Optimizations
	Slide 5: Building an HPC RV System Extended for Efficient Training
	Slide 6: Building an HPC RV System Extended for Efficient Training
	Slide 7: Large Manycore RISC-V Architecture - Manticore
	Slide 8: Efficient RISC-V Compute Clusters: Scalar + Parallel
	Slide 9: Building an HPC RV System Extended for Efficient Training
	Slide 10: Without Mixed-Precision Capabilities
	Slide 11: Without Mixed-Precision Capabilities
	Slide 12: SIMD Expanding Sum of Dot Product for Mixed Precision
	Slide 13: SIMD Expanding Sum of Dot Product for Mixed Precision
	Slide 14: ExSdotp Offers Further Benefits
	Slide 15: Targeted Floating-Point Formats
	Slide 16: Building an HPC RV System Extended for Efficient Training
	Slide 17: ExSdotp Unit
	Slide 18: Expanding Sum of Dot Product Unit
	Slide 19: Expanding Sum of Dot Product Unit
	Slide 20: Expanding Sum of Dot Product Unit
	Slide 21: Enhancing CVFPU with SIMD ExSdotp
	Slide 22: Enhancing CVFPU with SIMD ExSdotp
	Slide 23: Enhancing CVFPU with SIMD ExSdotp
	Slide 24: ExSdotp & CVFPU: Area and Timing
	Slide 25: MiniFloat-NN Cluster: Performance and Efficiency
	Slide 26: MiniFloat-NN Cluster: Performance and Efficiency
	Slide 27: MiniFloat-NN Cluster: Performance and Efficiency
	Slide 28: MiniFloat-NN Cluster: Performance and Efficiency
	Slide 29: Late-Breaking Results: ExSdotp in the Vector Extension
	Slide 30: Spatz: a Compact RISC-V Vector Processing Element
	Slide 31: MiniFloat-NN Spatz: Performance and Efficiency
	Slide 32: References
	Slide 33

