
MiniFloat-NN: A RISC-V ISA Extension
for Low-Precision NN Training

Luca Bertaccini (ETH Zurich)

pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

The Rapid Growth of AI

▪ NN models’ memory and compute
requirements are rapidly growing

▪ Technology scaling is not sufficient

▪ Required algorithmic and architectural
advancements

S. Lie, “Thinking outside the die: Architecting the ML accelerator of the future”

1

Algorithmic Advancements

▪ New low-precision data types:

▪ 32-bit → 19-bit → 16-bit → 8-bit
floating-point (FP) data types

▪ Lower memory requirements

▪ Opportunities for more efficient
hardware architectures

▪ Wide interest for standardization
(RISC-V FP SIG, IEEE P3109)

Only few mantissa
bits

2

▪ New mixed and low-precision training
algorithms have been developed to exploit the
resilience of NN models to noise

▪ Expanding/Widening operations in which the
accumulation is performed in higher precision

Application-Specific Optimizations

[AMD Naffziger ISCAS22]

▪ The more an architecture is specialized, the
narrower the application scenarios in which it
represents an attractive solution

▪ General-purpose RISC-V CPUs can be
extended with domain-specific ISA extension:

▪ Opportunities for deeply optimizating the
efficiency of the processing element in a large
manycore system

▪ Without compromising the baseline standardized
ISA

3

Building an HPC RV System Extended for Efficient Training

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to

hierarchically

replicate to build

HPC RV manycore

systems

Set of instructions
and formats to

efficiently compute
NN workloads

Hardware

functional unit and

system integration

4

Set of instructions
and formats to

efficiently compute
NN workloads

Hardware

functional unit and

system integration

Building an HPC RV System Extended for Efficient Training

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to

hierarchically

replicate to build

HPC RV manycore

systems

4

Large Manycore RISC-V Architecture - Manticore

▪ Manticore: a chiplet-based hierarchically-scalable architecture

▪ Linux-capable host + large manycore accelerator built upon the replication of efficient L1-shared
compute clusters

Zaruba et al. (Manticore: A 4096-core RISC-V chiplet
architecture for ultraefficient floating-point computing)

5

Efficient RISC-V Compute Clusters: Scalar + Parallel

▪ Manticore cluster: Snitch compute cluster*

▪ Small integer scalar 32b cores coupled with
large SIMD FPUs (FP64, FP32) sharing a
scratchpad memory

▪ ISA extensions that implicity encode
loads/stores to register reads/writes + loops
handled in HW → ~90% FPU utilization

▪ Need for narrow FP formats and expanding
instructions to efficiently tackle mixed, low-
precision NN training

L
1

 S
P

M

Bank 31

…

Bank 2

Bank 1

Bank 0

In
te

rc
o

n
n

e
c

t

L
1

 S
h

a
re

d
 I

$

External AXI port

FPU

FPU

Snitch
FPU

Snitch

Snitch

Snitch Cluster

6

SnitchDMA512

64

*https://github.com/pulp-platform/snitch

Set of instructions
and formats to

efficiently compute
NN workloads

Hardware

functional unit and

system integration

Building an HPC RV System Extended for Efficient Training

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to

hierarchically

replicate to build

HPC RV manycore

systems

7

Without Mixed-Precision Capabilities

8

<configure loop>

Loop:

simd_fmacc.s fa0, ft0, ft1

EndLoop:

<reduction>

N

In the case of no mixed-precision support:

If the application can work on FP16/FP16ALT
inputs but accumulation in FP32 required:

▪ FP16 with accumulation on FP32 requires
additional conversion which affects the
performance

▪ An FP32 kernel can be used

+
<configure loop>

Loop:

simd_fmacc.s fa0, ft0, ft1

EndLoop:

<reduction>

Without Mixed-Precision Capabilities

8

▪ SIMD FP32 FMA

ft0

ft1

FP32 FP32 fa0

SIMD FMA FMA: aw*bw + cw

FP32FP32

64 bits

+

FP32 FP32FP32FP32

FP32 FP32FP32FP32FP32FP32

××

N

In the case of no mixed-precision support:

If the application can work on FP16/FP16ALT
inputs but accumulation in FP32 required:

▪ FP16 with accumulation on FP32 requires
additional conversion which affects the
performance

▪ An FP32 kernel can be used

SIMD Expanding Sum of Dot Product for Mixed Precision

FP16 FP16 FP16 FP16

FP16 FP16 FP16 FP16

ft0

ft1

FP32 FP32 fa0

SIMD ExSdotp Exsdotp: aw*bw + cw*dw + e2w

FP16

FP16

FP32

FP16

FP16

FP32

64 bits

FP16

FP16

FP16

FP16

××

+

+

××

+

+

▪ With SIMD ExSdotp, 2x FLOP per cycle
▪ Same perf as SIMD FP16 FMA but more accurate

<configure loop>

Loop:

exsdotp.s.h fa0, ft0, ft1

EndLoop:

vsum.s fa1, fa0 #reduction

N/2

9

SIMD Expanding Sum of Dot Product for Mixed Precision

00...0 FP32 fa1FP32

64 bits

+

FP32 FP32 fa0FP32FP32

Vsum Vsum: a2w + c2w + e2w

+

FP16 FP16 FP16 FP16

FP16 FP16 FP16 FP16

ft0

ft1

FP32 FP32 fa0

SIMD ExSdotp Exsdotp: aw*bw + cw*dw + e2w

FP16

FP16

FP32

FP16

FP16

FP32

64 bits

FP16

FP16

FP16

FP16

××

+

+

××

+

+

<configure loop>

Loop:

exsdotp.s.h fa0, ft0, ft1

EndLoop:

vsum.s fa1, fa0 #reduction

N/2

▪ With SIMD ExSdotp, 2x FLOP per cycle
▪ Same perf as SIMD FP16 FMA but more accurate

9

ExSdotp Offers Further Benefits

▪ Fused ExSdotp unit

▪ Single normalization and rounding step

▪ Opportunity to mitigate issues related
to the non-associativity of the two
consecutive additions

ExSdotp

ExSdotp2w = aw*bw + cw*dw + e2w

2wwwww

2w

10

Targeted Floating-Point Formats

▪ ExSdotp source formats:

▪ FP16alt (1, 8, 7)

▪ FP16 (1, 5, 10)

▪ FP8alt (1, 5, 2)

▪ FP8 (1, 4, 3)

▪ ExSdotp destination formats:

▪ FP32 (1, 8, 23)

▪ FP16alt (1, 8, 7)

▪ FP16 (1, 5, 10)

*Subnormals handled for all combinations of formats

▪ A parametric design to enable fast exploration of new FP formats

Alternate formats are
enabled by FCSRs to
reduce the number of

instructions

Many formats +
mixed-precision

would result in a large
ISA extension

11

Set of instructions
and formats to

efficiently compute
NN workloads

Hardware

functional unit and

system integration

Building an HPC RV System Extended for Efficient Training

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to

hierarchically

replicate to build

HPC RV manycore

systems

12

ExSdotp Unit

ExSdotp: an open-source* parameterized multi-format
unit supporting ExSdotp and three-term additions

(Vsum, ExVsum)

*https://github.com/openhwgroup/cvfpu/tree/feature/expanding_dotp 13

Expanding Sum of Dot Product Unit

▪ w = source format bitwidth; ps = source format mant bits

▪ 2w = destination format bitwidth; pd = destination format mant bits

▪ ExSdotp = aw*bw + cw*dw + e2w

aw bw cw dw e2w

Three-addend sorting

x

>>

+

Normalization & Rounding

+

>>

x

max int min

pd pd pd

psps psps

2pd+ps+42pd+4

2pd+ps+5

2pd+32pd+3

pd

Mantissa dataflow 14

Issues arising in a single DOTP instruction (2 sums):

Cancellation: Three-addend sorting to prevent precision
losses due to cancellation during the three-term addition:

▪ (a + b) – a might return 0 if a is much larger than b

▪ Decreasing order (abs value) -> (a – a) + b = b

Small quantities lost in the second addition: Gradually
increasing the internal bitwidth to retain precision

Issues arising in long summations:

Stagnation: Stochastic rounding mitigates stagnation,
where long sum of small quantities are lost to rouding

Expanding Sum of Dot Product Unit

Mantissa dataflow 15

aw bw cw dw e2w

Three-addend sorting

x

>>

+

Normalization & Rounding

+

>>

x

max int min

pd pd pd

psps psps

2pd+ps+42pd+4

2pd+ps+5

2pd+32pd+3

pd

aw bw cw dw e2w

Three-addend sorting

x

>>

+

Normalization & Rounding

+

>>

x

max int min

pd pd pd

psps psps

2pd+ps+42pd+4

2pd+ps+5

2pd+32pd+3

pd

Expanding Sum of Dot Product Unit

▪ w = source format bitwidth

▪ 2w = destination format bitwidth

▪ ExSdotp = aw*bw + cw*dw + e2w

▪ ExVsum = aw*1 + cw*1 + e2w

▪ Vsum = a2w + c2w + e2w

▪ ExVsum/Vsum to reduce and accumulate the results
packed in a register after SIMD ExSdotp executions

▪ Support for non-expanding three-term sum added by
bypassing the multiplications

▪ All the necessary logic is already present as the
targeted ExSdotp operations were expanding

Mantissa dataflow 16

Enhancing CVFPU with SIMD ExSdotp

▪ CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU

17

Enhancing CVFPU with SIMD ExSdotp

▪ CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU
▪ SIMD ExSdotp unit integrated into CVFPU as a new operation group block
▪ Parametrized pipeline levels
▪ SIMD SDOTP: two 16-to-32-bit units and two 8-to-16-bit units → Up to two 16-to-32-bit ExSdotp and four

8-to-16-bit ExSdotp per cycle

17

Enhancing CVFPU with SIMD ExSdotp

▪ CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU
▪ SIMD FMA
▪ As proposed in https://iis-git.ee.ethz.ch/smach/smallFloat-spec

18

ExSdotp & CVFPU: Area and Timing

▪ Implemented in GlobalFoundries 12nm FinFET
technology

▪ Max Frequency → 1.24GHz (typ 0.8V, 25 °C)

▪ The SIMD SDOTP unit occupies 44.5 kGE,
amounting to 27% of the enhanced FPU area (overall
FPU area = 165kGE).

▪ Full extension introduced less than 15% area
overhead at a cluster level

19

MiniFloat-NN Cluster: Performance and Efficiency

20

FMA-based
GEMM

MiniFloat-NN Cluster: Performance and Efficiency

20

ExSdotp-
based
GEMM

FMA-based
GEMM

Same performance at a higher accumulation precision

MiniFloat-NN Cluster: Performance and Efficiency

20

ExSdotp-
based
GEMM

FMA-based
GEMM

1.9x

MiniFloat-NN Cluster: Performance and Efficiency

7.2x

Up to 7.2x performance and more than 7.5x energy efficiency
improvement with respect to FP64 computation (<15% area
overhead on the entire cluster) + reduced memory footprint

20

FMA-based
GEMM

ExSdotp-
based
GEMM

With the
required higher

precision
accumulation

Late-Breaking Results: ExSdotp in the Vector Extension

FPU
00…0 FP16 FP16

00...0 FP16 FP16

FP32

FP32 FP32

Vectorial ExFMA

FP32

vfwmacc.vv v0, v1, v2
v02w[i] += v1w[i] * v2w[i]

▪ Mixed-precision support
▪ Lower memory footprint
▪ Still Expanding FMA underutilize the FPU

bandwidth
▪ We can provide the FPU with more data

and compute more every cycle

vfwdotp.vv v0,v1,v2
v02w[i] += v1w[2i] * v2w[2i] +

v1w[2i+1] * v2w[2i+1]
FPU

FP16 FP16

FP16 FP16

FP32

FP32 FP32

Vectorial ExSdotp

FP16 FP16

FP16 FP16

FP32

21

Spatz: a Compact RISC-V Vector Processing Element

Spatz – a compact vector processor conceived
as an alternative building block for the Manticore
architecture

▪ Small latch-based Vector Register File

▪ ~95% FPU utilization, SIMD FPUs (FP64-FP8)
with ExSdotp support

L
1

S
P

M

Bank 15

…

Bank 2

Bank 1

Bank 0

In
te

rc
o

n
n

ec
t

L
1

I$

External AXI port

FPU

FPU

FPU

Snitch

VRF

Spatz

Spatz Cluster

22

Cavalcante, M., Wüthrich, D., Perotti, M., Riedel, S., & Benini, L.: Spatz: A Compact Vector
Processing Unit for High-Performance and Energy-Efficient Shared-L1 Clusters.”, ICCAD 2022

(https://arxiv.org/abs/2207.07970)

MiniFloat-NN Spatz: Performance and Efficiency

1.96x

Around 2x higher performance with ExSdotp at 1.5x energy efficiency

23

References

Bertaccini, L., Paulin, G., Fischer, T., Mach, S., Benini, L.:
MiniFloat-NN and ExSdotp: An ISA Extension and a Modular Open Hardware Unit for Low-

Precision Training on RISC-V Cores.

ARITH22
(https://arxiv.org/abs/2207.03192)

24

github.com/openhwgroup/cvfpu/tree/feature/expanding_dotp

pulp-platform.org@pulp_platform youtube.com/pulp_platform

	Slide 1
	Slide 2: The Rapid Growth of AI
	Slide 3: Algorithmic Advancements
	Slide 4: Application-Specific Optimizations
	Slide 5: Building an HPC RV System Extended for Efficient Training
	Slide 6: Building an HPC RV System Extended for Efficient Training
	Slide 7: Large Manycore RISC-V Architecture - Manticore
	Slide 8: Efficient RISC-V Compute Clusters: Scalar + Parallel
	Slide 9: Building an HPC RV System Extended for Efficient Training
	Slide 10: Without Mixed-Precision Capabilities
	Slide 11: Without Mixed-Precision Capabilities
	Slide 12: SIMD Expanding Sum of Dot Product for Mixed Precision
	Slide 13: SIMD Expanding Sum of Dot Product for Mixed Precision
	Slide 14: ExSdotp Offers Further Benefits
	Slide 15: Targeted Floating-Point Formats
	Slide 16: Building an HPC RV System Extended for Efficient Training
	Slide 17: ExSdotp Unit
	Slide 18: Expanding Sum of Dot Product Unit
	Slide 19: Expanding Sum of Dot Product Unit
	Slide 20: Expanding Sum of Dot Product Unit
	Slide 21: Enhancing CVFPU with SIMD ExSdotp
	Slide 22: Enhancing CVFPU with SIMD ExSdotp
	Slide 23: Enhancing CVFPU with SIMD ExSdotp
	Slide 24: ExSdotp & CVFPU: Area and Timing
	Slide 25: MiniFloat-NN Cluster: Performance and Efficiency
	Slide 26: MiniFloat-NN Cluster: Performance and Efficiency
	Slide 27: MiniFloat-NN Cluster: Performance and Efficiency
	Slide 28: MiniFloat-NN Cluster: Performance and Efficiency
	Slide 29: Late-Breaking Results: ExSdotp in the Vector Extension
	Slide 30: Spatz: a Compact RISC-V Vector Processing Element
	Slide 31: MiniFloat-NN Spatz: Performance and Efficiency
	Slide 32: References
	Slide 33

