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The Rapid Growth of Al

Memory and compute requirements - NN mOdeIS memory and ComPUte
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Algorithmic Advancements

= New low-precision data types: FP32 8
= 32-bit > 19-bit > 16-bit > 8-bit TF32

floating-point (FP) data types bfloat16 _

DLFloat

FP16

OnIy few mantissa
FP8alt bits

= New mixed and low-precision training

= Opportunities for more efficient algorithms have been developed to exploit the
hardware architectures ‘ resilience of NN models to noise

= Lower memory requirements

=  Wide interest for standardization = Expanding/Widening operations in which the
(RISC-V FP SIG, IEEE P3109) accumulation is performed in higher precision
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Application-Specific Optimizations

= The more an architecture is specialized, the
narrower the application scenarios in which it
represents an attractive solution

= General-purpose RISC-V CPUs can be
extended with domain-specific ISA extension:

= Opportunities for deeply optimizating the
efficiency of the processing element in a large
manycore system

=  Without compromising the baseline standardized
ISA
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Application-Specific optimization provides
better performance-per-Watt

ﬂ

— Domain Specific

Performance/Watt

</
General

— Purpose
CPU

Applications

[AMD Naffziger ISCAS22] THE
3 Lo LINUX

FOUNDATION




Building an HPC RV System Extended for Efficient Training ‘;w

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to
hierarchically
replicate to build

Set of instructions
and formats to
efficiently compute

HPC RV manycore NN workloads
systems
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Building an HPC RV System Extended for Efficient Training ‘;@

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to
hierarchically
replicate to build

Set of instructions
and formats to
efficiently compute

Hardware
functional unit and

HPC RV manycore NN workloads system integration
systems
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Chiplet 1

Chiplet 3

TRRREER
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Zaruba et al. (Manticore: A 4096-core RISC-V chiplet ‘ _ \

architecture for ultraefficient floating-point computing)

= Manticore: a chiplet-based hierarchically-scalable architecture

= Linux-capable host + large manycore accelerator built upon the replication of efficient L1-shared
compute clusters
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Efficient RISC-V Compute Clusters: Scalar + Parallel

Snitch Cluster

FPU

Manticore cluster: Snitch compute cluster*
512

}

64

= Small integer scalar 32b cores coupled with Bank 0

large SIMD FPUs (FP64, FP32) sharing a
scratchpad memory

H

L1 Shared IS

= |SA extensions that implicity encode
loads/stores to register reads/writes + loops
handled in HW = ~90% FPU utilization

FPU

L1 SPM
AEEEEEEEEEEEEEEEEEEEEEEEEEEEEEnnnnnd

= Need for narrow FP formats and expanding
instructions to efficiently tackle mixed, low-
precision NN training

FPU

H

‘ External AXI port
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Building an HPC RV System Extended for Efficient Training ‘Z’w

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to
hierarchically
replicate to build

Set of instructions
and formats to
efficiently compute

Hardware
functional unit and

HPC RV manycore NN workloads system integration
systems
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Without Mixed-Precision Capabilities

In the case of no mixed-precision support:

If the application can work on FP16/FP16ALT
inputs but accumulation in FP32 required:

= FP16 with accumulation on FP32 requires
additional conversion which affects the
performance

= An FP32 kernel can be used

<configure loop>
Loop:

simd_fmacc.s fa@, fto, ftil }N
EndLoop:

<reduction>
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Without Mixed-Precision Capabilities

= SIMD FP32 FMA

In the case of no mixed-precision support:

If the application can work on FP16/FP16ALT
inputs but accumulation in FP32 required:

= FP16 with accumulation on FP32 requires
additional conversion which affects the
performance

= An FP32 kernel can be used

SIMD FMA FMA: a,*b,, +c,
FP32 FP32 fto
FP32 FP32 ftl
FP32 FP32 fa0
\ )\ ¢
64 bits
ETH:zurich MO AT STURIRN

<configure loop>
Loop:

simd_fmacc.s fa0, fto, ftil }N
EndLoop:

<reduction>
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SIMD Expanding Sum of Dot Product for Mixed Precision 6@

=  With SIMD ExSdotp, 2x FLOP per cycle

= Same perf as SIMD FP16 FMA but more accurate SeEnrlgre dovps

Loop:

SIMD ExSdotp | Exsdotp: a,*b,, + ¢, *d,, +e,, exsdotp.s.h fa@, fto, ftil }le
EndLoop:

FP16 | FP16 | FP16 | FP16 ft0 vsum.s fal, fa@ #reduction

FP16|[|FP16 | FP16| || FP16 | | ft1
(%) 9 (Y (%)

O )
O O
FP32 FP32 fa0
| ¢ Y J
64 bits
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SIMD Expanding Sum of Dot Product for Mixed Precisi_on &

=  With SIMD ExSdotp, 2x FLOP per cycle

= Same perf as SIMD FP16 FMA but more accurate CERMVIEUFE OG>

Loop:
SIMD ExSdotp | Exsdotp: a,*b,, + c,*d, +e,, exsdotp.s.h fa@, fte, fti } N/2
EndLoop:
FP16 | FP16 | FP16 | FP16 ft0 vsum.s fal,fal@ #reduction
FP16| || FP16 | FP16| |] FP16 ftl Veurn TS B B B
(%) (%) (%) (%) — FP32 FP32 fa0
@ @® ' G
() ()
FP32 FP32 fa0 [ —— 00...0 FP32 fal
L N v y ) | | v V)
64 bits 64 bits
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ExSdotp Offers Further Benefits

» Fused ExSdotp unit
= Single normalization and rounding step
= QOpportunity to mitigate issues related

to the non-associativity of the two
consecutive additions

ETH:zurich
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ExSdotp

iz.”

ExSdotp,,, =a,*b, +c,*d, +e,,
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Targeted Floating-Point Formats

FP32
FP16alt
FP16
FP8
Alternate formats are
FPgalt

enabled by FCSRs to
reduce the number of

= A parametric design to enable fast exploration of new FP formats e,

= ExSdotp source formats:

» FP16alt (1, 8,7) = ExSdotp destination formats:
- FP16 (1,5, 10) = FP32(1,8,23)

= FP8alt (1, 5, 2) = FP16alt (1, 8,7)

= FP8(1,4,3) = FP16 (1, 5,10)
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Building an HPC RV System Extended for Efficient Training &b

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to
hierarchically
replicate to build

Set of instructions
and formats to
efficiently compute

HPC RV manycore NN workloads
systems
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ExSdotp Unit

ExSdotp: an open-source* parameterized multi-format
unit supporting ExSdotp and three-term additions
(Vsum, ExVsum)
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Expanding Sum of Dot Product Unit

= w = source format bitwidth; ps = source format mant bits
aw I:’w cw dw e2w
= 2w = destination format bitwidth; pd = destination format mant bits
ps pSs ps ps
= ExSdotp =a,*b,+c,*d,+e,, o od pd
Three-addend sorting
min
2pd+3 2pd+3
2pd+ps+4

2pd+ps+5

Normalization & Rounding
THE

T
 DRIAMATER STYRISRYM Mantissa dataflow |14 L. EBB'N%,H@,S

ETH:zurich




Expanding Sum of Dot Product Unit

Issues arising in a single DOTP instruction (2 sums):

Cancellation: Three-addend sorting to prevent precision

losses due to cancellation during the three-term addition:

= (a+b) - amight return 0 if ais much larger than b
= Decreasing order (abs value) ->(a—-a)+b=b

Small quantities lost in the second addition: Gradually
increasing the internal bitwidth to retain precision

Issues arising in long summations:

Stagnation: Stochastic rounding mitigates stagnation,
where long sum of small quantities are lost to rouding

ETH:zirich

MATER STUDIORUM
RSITA DI BOLOGNA

W cw dw e2w

pd pd pd

min
2pd+3 2pd+3
2pd+ps+4
2pd+ps+5
Normalization & Rounding
T
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Expanding Sum of Dot Product Unit

= w = source format bitwidth

= Support for non-expanding three-term sum added by
bypassing the multiplications

= All the necessary logic is already present as the
targeted ExSdotp operations were expanding ——— o ———— $ Pl= = = = = - — -

a,, b,l| |c e
= 2w = destination format bitwidth
ps ps ps ps
= ExSdotp =a,*b,+c,*d,+e,, I RN PR PR
= ExVsum =a,*1+c,*1 +e,, : |
- I
= Vsum =a,,* Cy, €y, | il
I I
I I
= ExVsum/Vsum to reduce and accumulate the results :Zpd+3 I
packed in a register after SIMD ExSdotp executions : I
I 2pd+ps+4
I
: I
I
I I
I I
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Enhancing CVFPU with SIMD ExSdotp

64 64 64
FPU

Operands distribution

2222 22

Operation ~ Operation
Group Group

COMP CAST

v

Round-robin output arbitration

4

= CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU
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Enhancing CVFPU with SIMD ExSdotp

64 64 64 A 64 64 64
FPU SDOTP \ 4

Operands distribution Unpacking

u AT

Operation  Operation  Operation
GI'OUP GI'OUP GI'OUP 16-t0-32 16-to-32 YVYVYYY YVYVYVYY
ExSdotp ExSdotp 8-to-16 8-to-16
COMP CAST SDOTP ExSdotp ExSdotp
Round-robin output arbitration Packing

64{ 64{
= CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU
= SIMD ExSdotp unit integrated into CVFPU as a new operation group block
= Parametrized pipeline levels
=  SIMD SDOTP: two 16-to-32-bit units and two 8-to-16-bit units - Up to two 16-to-32-bit ExSdotp and four
8-to-16-bit ExSdotp per cycle THE
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Enhancing CVFPU with SIMD ExSdotp

64 64 64 A 64 64 64
FPU ADDMUL \ 4

Operands distribution Unpacking

22 22 AR A e 222

Operation  Operation  Operation
Group Group Group
ComP CAST SDOTP
Round-robin output arbitration Packing

64{ 64{
= CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU

= SIMD FMA
»= As proposed in https.//iis-git.ee.ethz.ch/smach/smallFloat-spec
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ExSdotp & CVFPU: Area and Timing

= |Implemented in GlobalFoundries 12nm FinFET

technology

- kd
= Max Frequency - 1.24GHz (typ 0.8V, 25 °C) FPU - Area Bré,_amis?wn

i 0
SDOTP 1%
27%

- The SIMD SDOTP unit occupies 44.5 kGE— -Pua
amounting to 27% of the enhanced FPU area (overall
FPU area = 165kGE).
= Full extension introduced less than 15% area ‘;23/1 _7
overhead at a cluster level O Te%
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MiniFloat-NN Cluster: Performance and Efficiency

FLOP/cycle

128 FMA-based
112

0 GEMM

80

64

48

32 I I

16

‘m N
fp64 fp32 fp16 fp16->fp32  fp8->fp16
B 64x64 m64x128 128x128 m 128x256
THE
ETHziUrich 0 s 20 ke I LINUX



MiniFloat-NN Cluster: Performance and Efficiency

FLOP/cycle

128 FMA-based ExSdotp-
112
96 GEMM based
80 GEMM
64 0 FPE======
48 |
; I| .
o m i :

fp64 fp32 fp16 fp16- >fp32: fp8->fp16

m 64x64 l64x128 128x128 m 128x256

Same performance at a higher accumulation precision
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MiniFloat-NN Cluster: Performance and Efficiency

FLOP/cycle
128 FMA-based ExSdotp-
112 b d
95 GEMM ase
80 GEMM
64
48 ........
32 IIIIII II IIIIIII I IIIII 1 1 ° 9x
16
|
fp64 fp32 fp16 fp16->fp32  fp8->fp16
H64x64 ™ 64x128 128x128 m 128x256
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MiniFloat-NN Cluster: Performance and Efficiency

FLOP/cycle
128 FMA-based ExSdotp-
112
96 GEMM based
50 GEMM
64
32 I I
lg o I ....................................
fp64 fp32 fp16  fp16->fp32 | fp8->ip16 |

m64x64 m64x128 128x128 m 128x256

Up to 7.2x performance and more than 7.5x energy efficiency
improvement with respect to FP64 computation (<15% area
overhead on the entire cluster) + reduced memory footprint
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Late-Breaking Results: ExSdotp in the Vector Extension &

vfwmacc.vv vo, vl, v2 Vectorial EXFMA
VeZW[i] += Vlw[i] * Vzw[i]

[ 00..0 [FP16]FP16]mmmpy
" Mixed-precision support [00.0 [rriclrricl===p{ FP|J P=—»[Fr32 [ P32 |
= Lower memory footprint
= Still Expanding FMA underutilize the FPU [ P32 T 32 ]=—p
bandwidth
= We can provide the FPU with more data
and compute more every cycle Vectorial ExSdotp
vfwdotp.vv vO,vl,v2 . [FP16]FPI6]FPL6]FP 6] memmes)y
vOy,[1] += VlW[ZJj] : VZW[Z:!'] t [EPiclrpiclpiclrpicl=———p FP|J p=—»[Fr32_1 P32 ]
vl [2i+1] v2, [2i+1] e - —
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Spatz: a Compact RISC-V Vector Processing Element &

Spatz Cluster k

Spatz — a compact vector processor conceived
as an alternative building block for the Manticore
architecture

= Small latch-based Vector Register File

L1 SPM

= ~95% FPU utilization, SIMD FPUs (FP64-FP8)
with ExSdotp support

EEE _ EEEEEEEEEEEEEE_ENEEEEEEN. IENEER
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‘ External AXI port

‘ Cavalcante, M., Wiithrich, D., Perotti, M., Riedel, S., & Benini, L.: Spatz: A Compact Vector THE
R O MATR STURIORUM Processing Unit for High-Performance and Energy-Efficient Shared-L1 Clusters.”, ICCAD 2022 59 L %OB%/&%%
(https://arxiv.org/abs/2207.07970)
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fp32 fp16->fp32 fp16->fp32
(FMA) (exFMA)  (ExSdotp)

Around 2x higher performance with ExSdotp at 1.5x energy efficiency
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