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The Rapid Growth of AI

▪ NN models’ memory and compute 
requirements are rapidly growing

▪ Technology scaling is not sufficient

▪ Required algorithmic and architectural
advancements

S. Lie, “Thinking outside the die: Architecting the ML accelerator of the future”
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Algorithmic Advancements

▪ New low-precision data types:

▪ 32-bit → 19-bit → 16-bit → 8-bit 
floating-point (FP) data types

▪ Lower memory requirements

▪ Opportunities for more efficient
hardware architectures

▪ Wide interest for standardization
(RISC-V FP SIG, IEEE P3109)

Only few mantissa 
bits
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▪ New mixed and low-precision training
algorithms have been developed to exploit the 
resilience of NN models to noise

▪ Expanding/Widening operations in which the 
accumulation is performed in higher precision



Application-Specific Optimizations

[AMD Naffziger ISCAS22]

▪ The more an architecture is specialized, the 
narrower the application scenarios in which it
represents an attractive solution

▪ General-purpose RISC-V CPUs can be 
extended with domain-specific ISA extension:

▪ Opportunities for deeply optimizating the 
efficiency of the processing element in a large 
manycore system

▪ Without compromising the baseline standardized
ISA 
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Building an HPC RV System Extended for Efficient Training

MiniFloat-NN: a RISC-V ISA extension for low-
precision NN training

Efficient clusters to 

hierarchically 

replicate to build 

HPC RV manycore 

systems

Set of instructions
and formats to 

efficiently compute 
NN workloads

Hardware

functional unit and 

system integration
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Large Manycore RISC-V Architecture - Manticore

▪ Manticore: a chiplet-based hierarchically-scalable architecture

▪ Linux-capable host + large manycore accelerator built upon the replication of efficient L1-shared 
compute clusters

Zaruba et al. (Manticore: A 4096-core RISC-V chiplet
architecture for ultraefficient floating-point computing)
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Efficient RISC-V Compute Clusters: Scalar + Parallel

▪ Manticore cluster: Snitch compute cluster*

▪ Small integer scalar 32b cores coupled with 
large SIMD FPUs (FP64, FP32) sharing a 
scratchpad memory

▪ ISA extensions that implicity encode
loads/stores to register reads/writes + loops 
handled in HW → ~90% FPU utilization

▪ Need for narrow FP formats and expanding
instructions to efficiently tackle mixed, low-
precision NN training
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SnitchDMA512

64

*https://github.com/pulp-platform/snitch
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Without Mixed-Precision Capabilities
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<configure loop>

Loop:

simd_fmacc.s fa0, ft0, ft1

EndLoop:

<reduction>

N

In the case of no mixed-precision support:

If the application can work on FP16/FP16ALT 
inputs but accumulation in FP32 required:

▪ FP16 with accumulation on FP32 requires
additional conversion which affects the 
performance

▪ An FP32 kernel can be used



+
<configure loop>

Loop:

simd_fmacc.s fa0, ft0, ft1

EndLoop:

<reduction>

Without Mixed-Precision Capabilities
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▪ SIMD FP32 FMA

ft0

ft1

FP32 FP32 fa0

SIMD FMA            FMA: aw*bw + cw

FP32FP32

64 bits

+

FP32 FP32FP32FP32

FP32 FP32FP32FP32FP32FP32

××

N

In the case of no mixed-precision support:

If the application can work on FP16/FP16ALT 
inputs but accumulation in FP32 required:

▪ FP16 with accumulation on FP32 requires
additional conversion which affects the 
performance

▪ An FP32 kernel can be used



SIMD Expanding Sum of Dot Product for Mixed Precision

FP16 FP16 FP16 FP16

FP16 FP16 FP16 FP16

ft0

ft1

FP32 FP32 fa0

SIMD ExSdotp Exsdotp: aw*bw + cw*dw + e2w

FP16

FP16

FP32

FP16

FP16

FP32

64 bits

FP16

FP16

FP16

FP16

××

+

+

××

+

+

▪ With SIMD ExSdotp, 2x FLOP per cycle
▪ Same perf as SIMD FP16 FMA but more accurate

<configure loop>

Loop:

exsdotp.s.h fa0, ft0, ft1

EndLoop:

vsum.s fa1, fa0 #reduction

N/2
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SIMD Expanding Sum of Dot Product for Mixed Precision

00...0 FP32 fa1FP32

64 bits

+

FP32 FP32 fa0FP32FP32

Vsum Vsum: a2w + c2w + e2w

+

FP16 FP16 FP16 FP16

FP16 FP16 FP16 FP16

ft0

ft1

FP32 FP32 fa0

SIMD ExSdotp Exsdotp: aw*bw + cw*dw + e2w

FP16

FP16

FP32

FP16

FP16
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<configure loop>

Loop:

exsdotp.s.h fa0, ft0, ft1

EndLoop:

vsum.s fa1, fa0 #reduction

N/2

▪ With SIMD ExSdotp, 2x FLOP per cycle
▪ Same perf as SIMD FP16 FMA but more accurate
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ExSdotp Offers Further Benefits 

▪ Fused ExSdotp unit

▪ Single normalization and rounding step

▪ Opportunity to mitigate issues related
to the non-associativity of the two
consecutive additions

ExSdotp

ExSdotp2w = aw*bw + cw*dw + e2w

2wwwww

2w
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Targeted Floating-Point Formats

▪ ExSdotp source formats:

▪ FP16alt (1, 8, 7) 

▪ FP16 (1, 5, 10) 

▪ FP8alt (1, 5, 2)

▪ FP8 (1, 4, 3)

▪ ExSdotp destination formats:

▪ FP32 (1, 8, 23)

▪ FP16alt (1, 8, 7)

▪ FP16 (1, 5, 10)

*Subnormals handled for all combinations of formats

▪ A parametric design to enable fast exploration of new FP formats

Alternate formats are 
enabled by FCSRs to 
reduce the number of 

instructions

Many formats + 
mixed-precision

would result in a large 
ISA extension
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ExSdotp Unit

ExSdotp: an open-source* parameterized multi-format 
unit supporting ExSdotp and three-term additions

(Vsum, ExVsum)

*https://github.com/openhwgroup/cvfpu/tree/feature/expanding_dotp 13



Expanding Sum of Dot Product Unit

▪ w = source format bitwidth; ps = source format mant bits 

▪ 2w = destination format bitwidth;  pd = destination format mant bits

▪ ExSdotp = aw*bw + cw*dw + e2w

aw bw cw dw e2w

Three-addend sorting

x

>>

+

Normalization & Rounding

+

>>

x

max int min

pd pd pd

psps psps

2pd+ps+42pd+4

2pd+ps+5

2pd+32pd+3

pd

Mantissa dataflow 14



Issues arising in a single DOTP instruction (2 sums):

Cancellation: Three-addend sorting to prevent precision
losses due to cancellation during the three-term addition:

▪ (a + b) – a might return 0 if a is much larger than b

▪ Decreasing order (abs value) -> (a – a) + b = b

Small quantities lost in the second addition: Gradually
increasing the internal bitwidth to retain precision

Issues arising in long summations:

Stagnation: Stochastic rounding mitigates stagnation, 
where long sum of small quantities are lost to rouding

Expanding Sum of Dot Product Unit

Mantissa dataflow 15
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aw bw cw dw e2w

Three-addend sorting

x

>>

+

Normalization & Rounding

+

>>

x

max int min

pd pd pd

psps psps

2pd+ps+42pd+4

2pd+ps+5

2pd+32pd+3

pd

Expanding Sum of Dot Product Unit

▪ w = source format bitwidth

▪ 2w = destination format bitwidth

▪ ExSdotp = aw*bw + cw*dw + e2w

▪ ExVsum = aw*1 + cw*1 + e2w

▪ Vsum = a2w + c2w + e2w

▪ ExVsum/Vsum to reduce and accumulate the results
packed in a register after SIMD ExSdotp executions

▪ Support for non-expanding three-term sum added by 
bypassing the multiplications

▪ All the necessary logic is already present as the 
targeted ExSdotp operations were expanding

Mantissa dataflow 16



Enhancing CVFPU with SIMD ExSdotp

▪ CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU
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Enhancing CVFPU with SIMD ExSdotp

▪ CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU
▪ SIMD ExSdotp unit integrated into CVFPU as a new operation group block
▪ Parametrized pipeline levels
▪ SIMD SDOTP: two 16-to-32-bit units and two 8-to-16-bit units → Up to two 16-to-32-bit ExSdotp and four

8-to-16-bit ExSdotp per cycle
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Enhancing CVFPU with SIMD ExSdotp

▪ CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU
▪ SIMD FMA
▪ As proposed in https://iis-git.ee.ethz.ch/smach/smallFloat-spec
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ExSdotp & CVFPU: Area and Timing

▪ Implemented in GlobalFoundries 12nm FinFET
technology

▪ Max Frequency → 1.24GHz (typ 0.8V, 25 °C) 

▪ The SIMD SDOTP unit occupies 44.5 kGE, 
amounting to 27% of the enhanced FPU area (overall 
FPU area = 165kGE). 

▪ Full extension introduced less than 15% area 
overhead at a cluster level
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MiniFloat-NN Cluster: Performance and Efficiency
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MiniFloat-NN Cluster: Performance and Efficiency
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ExSdotp-
based
GEMM

FMA-based
GEMM

Same performance at a higher accumulation precision



MiniFloat-NN Cluster: Performance and Efficiency
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1.9x



MiniFloat-NN Cluster: Performance and Efficiency

7.2x

Up to 7.2x performance and more than 7.5x energy efficiency
improvement with respect to FP64 computation (<15% area 
overhead on the entire cluster) + reduced memory footprint
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Late-Breaking Results: ExSdotp in the Vector Extension

FPU
00…0 FP16 FP16

00...0 FP16 FP16

FP32

FP32 FP32

Vectorial ExFMA

FP32

vfwmacc.vv v0, v1, v2 
v02w[i] += v1w[i] * v2w[i]

▪ Mixed-precision support
▪ Lower memory footprint
▪ Still Expanding FMA underutilize the FPU 

bandwidth
▪ We can provide the FPU with more data 

and compute more every cycle

vfwdotp.vv v0,v1,v2
v02w[i] += v1w[2i]   * v2w[2i] + 

v1w[2i+1] * v2w[2i+1] 
FPU

FP16 FP16

FP16 FP16

FP32

FP32 FP32

Vectorial ExSdotp

FP16 FP16

FP16 FP16

FP32
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Spatz: a Compact RISC-V Vector Processing Element

Spatz – a compact vector processor conceived
as an alternative building block for the Manticore 
architecture

▪ Small latch-based Vector Register File

▪ ~95% FPU utilization, SIMD FPUs (FP64-FP8) 
with ExSdotp support 
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Cavalcante, M., Wüthrich, D., Perotti, M., Riedel, S., & Benini, L.: Spatz: A Compact Vector 
Processing Unit for High-Performance and Energy-Efficient Shared-L1 Clusters.”, ICCAD 2022 

(https://arxiv.org/abs/2207.07970)



MiniFloat-NN Spatz: Performance and Efficiency

1.96x

Around 2x higher performance with ExSdotp at 1.5x energy efficiency
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