
||

Matheus Cavalcante

PhD Student
ETH Zurich

ARA: 64-BIT RISC-V VECTOR

IMPLEMENTATION IN

22NM FDSOI

https://tmt.knect365.com/risc-v-summit @risc_v

Fabian Schuiki

PhD Student
ETH Zurich

12.4.2018Matheus Cavalcante and Fabian Schuiki 1

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 2

Interconnect

64b

Ariane
1GHz

2 DP GFLOPS
8 GB/s

Instruction Data

64b 64b

I$, D$

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 3

Interconnect

64b

ARA

1GHz
8 DP GFLOPS

8 GB/s

Data

Instruction
Queue

ACK/TRAP

MMU

64b 64b

64b

Ariane
1GHz

2 DP GFLOPS
8 GB/s

Instruction Data

I$, D$

||

§ Operational Intensity: operations per byte
§ Algorithm dependent
§ One FMA = 2 operations

§ Memory- and compute-boundness

§ Memory bandwidth

§ Number of FMAs

12.4.2018Matheus Cavalcante and Fabian Schuiki 4

Memory Bandwidth and Performance: ARA and Ariane Rooflines

Compute-bound

Mem
ory-

bound

8B
/cy

cle
16

B/cy
cle

32
B/cy

cle

1 FMA

2 FMAs

4 FMAs
We want to

be here!

||

§ Global Foundries’ 22FDX process
§ Master’s Thesis (+ a few months of ongoing PhD studies!)
§ Planning to open-source it within the PULP platform (as usual!)

§ Snapshot of the current development
§ Challenges we faced
§ Results we achieved
§ Insights we gained

12.4.2018Matheus Cavalcante and Fabian Schuiki 5

ARA: High-performance vector processor

||

§ Vector processing: SIMD
§ Less instruction BW, simpler control, less

energy per operation

§ Packed-SIMD vs. Vector “Cray-like” SIMD

§ CRAY-I (1977)

§ Fujitsu A64FX
§ Based on ARM’s v8-A SVE
§ 512-bit wide packed-SIMD
§ Peak-performance at 2.7 TFLOPS

§ Hwacha
§ Vector-fetch architecture
§ More complex: vector unit fetches its

instructions and threads can diverge

12.4.2018Matheus Cavalcante and Fabian Schuiki 6

Vector processors background

tFE
TC

H
D

EC
O

D
E

EXECUTE

||

§ RISC-V “V” Extension: “Cray-like” vector-SIMD approach

§ ARA: based on version 0.4-DRAFT

§ No full compliance

§ No support to fixed-point and vector atomics – not our focus

§ Limited support to type promotions (e.g., 64b ← 8b + 8b) – hardware cost

§ Eventually dropped in later versions of the Extension

12.4.2018Matheus Cavalcante and Fabian Schuiki 7

RISC-V “V” Extension

Nov. 2017

0.4-DRAFT

May 2018

0.5-DRAFT

Dec. 2018

0.6-DRAFTMaster’s Thesis

Feb. 2018

t
Aug. 2018

PhD

||

ARA Microarchitecture

12.4.2018Matheus Cavalcante and Fabian Schuiki 8

||

§ We support masked FMA instructions (four
operands):
vmadd vd, vsa, vsb, vsc, vmask
vd[i] = lsb(vmask[i]) ? vsa[i] + vsb[i] + vsc[i] : 0;

§ The four lanes operate in lockstep
§ Low control overhead

§ FMA is pipelined (5 cycles) to meet fmin

constraint

§ Each lane gets 64b operands from four
256b input FIFO buffers (A, B, C, VMASK)
§ Number of lanes determines buffer width

12.4.2018Matheus Cavalcante and Fabian Schuiki 9

Main datapath element: FMA Units

64b

||

§ One input FIFO buffer provides one operand
to all the (four) lanes
§ 256b (4x64b) wide entries
§ One FIFO buffer per operand per multi-lane

datapath unit à 10 FIFO buffers

§ Output FIFO buffers for output operands,
one per multi-lane datapath unit

§ Needed to sustain maximum throughput for
the lock-step operation of the FUs, while
hiding the latency caused by banking
conflicts in the VRF (next slides)

12.4.2018Matheus Cavalcante and Fabian Schuiki 10

Operand FIFO queues

||

256b banks à one bank stores 4 operands consumed in parallel by the 4 lanes
8 banks à BF of 1,6 for the worst-case read BW (FMA is 4R+1W/cycle)

12.4.2018Matheus Cavalcante and Fabian Schuiki 11

Vector register file

Bank 0

256b

0 1 2

Bank 7

256b

3

Bank 6

256b

Bank 1

256b

Bank 2

256b

Bank 3

256b

Bank 4

256b

Bank 5

256b

4 5 6 7 8 9 A B
v0

0 1 2 3
v1

0 1 2 3
v2

v30 1 2 3

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 12

Vector Register File and Operand-Deliver Interconnect

§ All-to-all input log-interconnect

§ 256b wide (64bx4)

§ 8-source (VRF banks) x 10-dest (FIFO

buffers)

§ Registered boundaries (for timing)

§ All-to-all output log-interconnect

§ 256b wide (64bx4)

§ 4-source (out FIFO buffers) x 8 dest (RF
banks)

§ Fixed-priority arbiter

§ !" > !$ > !% > !&
§ VRF is built as 1RW SRAM banks

§ Writes have lower priority than reads –
unless output queue is full

||

§ Consider the execution of the following instruction
vmadd vd, vsa, vsb, vsc, vsmask

§ Worst case in terms of banking factor
§ 4 reads + 1 write per cycle
§ Banking factor = 1,75

§ We take a vector of length 256 (ideally 64 cycles to run)

12.4.2018Matheus Cavalcante and Fabian Schuiki 13

Execution of a FMA instruction

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 14

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

M A B C A

B

Mask

C

0 0 0 0

Cycle count: 1
FMA Utilization: 0/1 = 0%

The first 4 elements of all 4 operands are in Bank 0
3 access stalled due to banking conflicts

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 15

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

1 0 0 0

Cycle count: 2
FMA Utilization: 0/2 = 0%

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 16

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

2 1 0 0

Cycle count: 3
FMA Utilization: 0/3 = 0%

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 17

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

6 5 4 3

Cycle count: 7
FMA Utilization: 1/7 = 14%

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 18

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

7 6 5 4

Cycle count: 8
FMA Utilization: 2/8 = 25%

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 19

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

3 2 1 0

Cycle count: 12
FMA Utilization: 6/12 = 50%

0

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 20

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

4 3 2 1

Cycle count: 13
FMA Utilization: 7/13 = 54%

0

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 21

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

5 4 3 2

Cycle count: 14
FMA Utilization: 8/14 = 57%

1

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 22

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

6 5 4 3

Cycle count: 15
FMA Utilization: 9/15 = 60%

2

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 23

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

Cycle count: 69
FMA Utilization: 63/69 = 91%

0

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 24

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

Cycle count: 70
FMA Utilization: 64/70 = 91%

1

||

Final result
written to regfile

Hardware Support for Vector Reductions

12.4.2018Matheus Cavalcante and Fabian Schuiki 25

! = #
$
%$ & '$

§ Triggered by VMADD instruction with scalar result register
§ Executed on FMA units by feeding results back in as operand C
§ E.g. Reduction of 64-element vector:

§ Avg. utilization in this case 36% ((
()*&+,, - = 64)

FMA

0 = 1 & 2 + 4
5 cycles latency

A

B

C

Y

Lane 1

cycles

Lane 2

Lane 3

Lane 4

Accumulation Phase
16 cycles

20 partial sums (5 latency x 4 lanes)

Merge Results in each Lane
17 cycles

4 partial sums (4 lanes)

Merge Lanes
12 cycles

1 final sum

100% util. 24% util. 6.3% util.

||

Ways to Improve Reductions
§ Current Implementation (constant 29 cycle tail):

§
!

!"#$%& (36% for 64-element vector)

§ Future Improvement A:

§ Schedule FPU operations of next instruction in gaps of the reduction

§ Utilization improves to
!

!"'& (77% for 64-element vector)

§ Future Improvement B:

§ Add separate reduction adder

§ Utilization improves up to 100%, since reduction tail not eating away performance

12.4.2018Matheus Cavalcante and Fabian Schuiki 26

Lane 1

cycles

Lane 2

Lane 3

Lane 4

Instruction A Instruction B

Lane 1

cycles

Lane 2

Lane 3

Lane 4

Reduction Adder

Instruction A Instruction B Instruction C

Low Hardware Cost

(More Complex FSM)

Significant Hardware Cost

(Separate FP ADD Unit)

||

Benchmarks

12.4.2018Matheus Cavalcante and Fabian Schuiki 27

|| 12.4.2018

ATTAINABLE
PERFORMANCE

Matheus Cavalcante and Fabian Schuiki 28

ARA and Ariane – Peak performance

Compute bound
8 op/cycle

Mem
ory

bound

8B
/cy

cle

Compute bound
2 op/cycle

Performances we
must achieve!

||

§ Can we achieve 8 GFLOPs peak performance?
§ Upper-bound: four FMAs working at 100%

§ Three key kernels:
§ Multiply-add (DAXPY): heavily memory-bound
§ Convolution (DCONV): compute-bound
§ Matrix-multiplication (DGEMM): compute-bound

§ Cycle-accurate simulation from the RTL
§ We ignore the initial set-up cycles (around 40 cycles)
§ Startup, instruction fetch, decoding, vector unit configuration…

12.4.2018Matheus Cavalcante and Fabian Schuiki 29

Benchmarks

||

§ Strip-mined loop over the ! elements of
vectors " and #

§ Operational intensity
§ 3×8! = 24! bytes of memory transfers
§ 2! operations (multiply-adds)

§
/
/0 operations per byte

§ Memory-bound
§ We’ll be far from 8 GFLOPs!
§ But are we close to the performance limit?

12.4.2018Matheus Cavalcante and Fabian Schuiki 30

DAXPY: 1 ← 34 + 1
// Read scalar a
vins va, a, zero;

while (n != 0) {
// Stripmined loop
size_t vl = setvl(n);

// Read x and y
vld vx, x;
vld vy, y;

// vy = va . vx + vy
vmadd vy, va, vx, vy;

// Store y
vst vy, y;

// Bump pointers
x += vl; y += vl; n -= vl;

}

||

Vector
Length

FPU Utilization
(%)

Performance
(op/cycle)

32 5,6% 0,45
64 6,6% 0,53

128 7,3% 0,59
256 7,7% 0,62
512 8,0% 0,64

1024 8,1% 0,65

12.4.2018Matheus Cavalcante and Fabian Schuiki 31

DAXPY: Performance

§ We achieve what we could in terms of perf

§ Can’t expect 8 GFLOPs from a memory-bound kernel

§ Ops/cycle grows to 8 if we increase memory port
width (e.g. 128b à 2x perf)

||

§ Kernel particular for CNNs
§ Convolution kernel size: 7 channels, each 3×3
§ Image size: 7 channels, each #×1

§ Operational intensity
§ 3×3×8×7# = 504# bytes of memory transfers
§ 882# operations (multiply-adds)
§ 1,75 operations per byte

§ Compute-bound kernel
§ It should be possible to achieve 8 ops/cycle
§ Scheduling is key

12.4.2018Matheus Cavalcante and Fabian Schuiki 32

DCONV: 2 = 3 ∗ 5

LOAD

EXECUTE

LOAD

EXECUTE

t

Penalty

||

Vector
Length

FPU Utilization
(%)

Performance
(op/cycle)

32 19,8% 1,58
64 36,1% 2,89

128 61,5% 4,92
256 82,1% 6,57
512 82,3% 6,59

1024 82,5% 6,60

12.4.2018Matheus Cavalcante and Fabian Schuiki 33

DCONV: Performance

§ Initial banking conflicts limit performance
§ Performance goes up until strip-mining loop

comes to play
§ Unroll strip-mining: programmability?
§ Hard to hide all the memory transfers (initial

loads and final stores)

||

§ BLAS-3 routine
§ Common kernel in several applications

§ High data reuse
§ When the kernel is compute-bound, it should

be possible to achieve 8 ops/cycle

§ Operational intensity
§ 8×3$% = 24$% bytes of memory transfers
§ 2$. operations (multiply-adds)
§

/
0% operations per byte

§ If $ ≤ 12, kernel is memory-bound by ARA’s
VLSU unit

12.4.2018Matheus Cavalcante and Fabian Schuiki 34

DGEMM: 3 ← 567+ 93

||

Vector
Length

FPU Utilization
(%)

Performance
(op/cycle)

32 19,2% 1,54

64 37,8% 3,02

128 70,3% 5,62

256 84,7% 6,77
512 85,5% 6,84

1024 86.3% 6,91

12.4.2018Matheus Cavalcante and Fabian Schuiki 35

DGEMM: Performance

§ We see the same phenomena seen with DCONV
§ Initial banking conflicts limiting performance with

shorter vectors
§ Strip-mining and unmaskable memory transfers

limiting steady performance

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 36

So.. can we achieve 8 GFLOPs?

||

Implementation results

12.4.2018Matheus Cavalcante and Fabian Schuiki 37

|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 38

ARA: GF FDX22 1GHz implementation (SS, 0.72V, 125 ºC)

Ariane
36%

D$

I$

ARA
64%

VRF

1.3mm

0.
7m

m Critical path
45 gates

||

ARA

VR
F

VEX

VALU

VFPU

VMUL

Ariane

EX
FPU

M
U

L

Cache

§ ARA is 1.8× bigger than Ariane…
§ and has 4× its computational power

§ Operation density:
§ Ariane: 7,27 GFLOPS/mm2
§ ARA: 16,23 GFLOPS/mm2

12.4.2018Matheus Cavalcante and Fabian Schuiki 39

Ara and Ariane – Area breakdown

||

Conclusions

12.4.2018Matheus Cavalcante and Fabian Schuiki 40

||

§ Higher operational intensity → minimize data transfers
§ By shuffling and reordering data inside vector registers

§ Only two* instructions available
§ vslide: vd{i} = vs1{i + rs2}
§ vrgather: vd{i} = vs1{ vs2{i} }

§ Register-gather is too general → hard to optimize!
§ Dedicated instructions to more specific shuffling: permutations, rotations?

*(three, more recently, as vslide was split into vslideup and vslidedown)

12.4.2018Matheus Cavalcante and Fabian Schuiki 41

Shuffling instructions

||

§ We did benefit from decoupling the scalar and the vector unit

§ Different “worlds”
§ Scalar unit: speculative, one instruction issued per cycle, several in-flight instructions
§ Vector unit: non-speculative, latency-tolerant, high throughput, a few in-flight vector instructions

§ We see with apprehension ISA decisions that push towards their recoupling
§ E.g., the recent decision of mapping the vector registers over the floating-point registers

12.4.2018Matheus Cavalcante and Fabian Schuiki 42

Decoupling between scalar and vector units

||

§ ARA supports mixed-precision to a certain
extent

§ Previous versions allowed for a mixed-
precision instruction as 64b ← 8b + 8b
§ 8b, 16b and 32b operands could be promoted

to 64b operands
§ High hardware cost!

§ We now allow for a more restricted set of
type promotions
§ 8 → 16b, 16 → 32b and 32 → 64b
§ Aligned with newer revisions of the V Extension

12.4.2018Matheus Cavalcante and Fabian Schuiki 43

Mixed-precision

8b

64b

Sig
n/Z

er
o E

xte
nd

||

§ ARA: 64-bit vector processor

12.4.2018Matheus Cavalcante and Fabian Schuiki 44

Wrapping up...

||

Matheus Cavalcante

PhD Student
ETH Zurich

ARA: 64-BIT RISC-V VECTOR

IMPLEMENTATION IN

22NM FDSOI

https://tmt.knect365.com/risc-v-summit @risc_v

Fabian Schuiki

PhD Student
ETH Zurich

12.4.2018Matheus Cavalcante and Fabian Schuiki 45

