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§ Operational Intensity: operations per byte
§ Algorithm dependent
§ One FMA = 2 operations

§ Memory- and compute-boundness

§ Memory bandwidth

§ Number of FMAs
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Memory Bandwidth and Performance: ARA and Ariane Rooflines
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§ Global Foundries’ 22FDX process
§ Master’s Thesis (+ a few months of ongoing PhD studies!)
§ Planning to open-source it within the PULP platform (as usual!)

§ Snapshot of the current development 
§ Challenges we faced
§ Results we achieved
§ Insights we gained
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ARA: High-performance vector processor
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§ Vector processing: SIMD
§ Less instruction BW, simpler control, less 

energy per operation

§ Packed-SIMD vs. Vector “Cray-like” SIMD

§ CRAY-I (1977)

§ Fujitsu A64FX
§ Based on ARM’s v8-A SVE
§ 512-bit wide packed-SIMD
§ Peak-performance at 2.7 TFLOPS

§ Hwacha
§ Vector-fetch architecture
§ More complex: vector unit fetches its 

instructions and threads can diverge

12.4.2018Matheus Cavalcante and Fabian Schuiki 6

Vector processors background

tFE
TC

H
D

EC
O

D
E

EXECUTE



||

§ RISC-V “V” Extension: “Cray-like” vector-SIMD approach

§ ARA: based on version 0.4-DRAFT

§ No full compliance

§ No support to fixed-point and vector atomics – not our focus

§ Limited support to type promotions (e.g., 64b ← 8b + 8b) – hardware cost

§ Eventually dropped in later versions of the Extension
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RISC-V “V” Extension
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ARA Microarchitecture
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§ We support masked FMA instructions (four 
operands):
vmadd vd, vsa, vsb, vsc, vmask
vd[i] = lsb(vmask[i]) ? vsa[i] + vsb[i] + vsc[i] : 0;

§ The four lanes operate in lockstep
§ Low control overhead

§ FMA is pipelined (5 cycles) to meet fmin

constraint

§ Each lane gets 64b operands from  four 
256b input FIFO buffers (A, B, C, VMASK)
§ Number of lanes determines buffer width
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Main datapath element: FMA Units

64b
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§ One input FIFO buffer provides one operand 
to all the (four) lanes 
§ 256b (4x64b) wide entries
§ One FIFO buffer per operand per multi-lane 

datapath unit à 10 FIFO buffers

§ Output FIFO buffers for output operands, 
one per multi-lane datapath unit

§ Needed to sustain maximum throughput for 
the lock-step operation of the FUs, while 
hiding the latency caused by banking 
conflicts in the VRF (next slides)
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Operand FIFO queues
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256b banks à one bank stores 4 operands consumed in parallel by the 4 lanes
8 banks à BF of 1,6 for the worst-case read BW (FMA is 4R+1W/cycle)
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Vector register file
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Vector Register File and Operand-Deliver Interconnect

§ All-to-all input log-interconnect 

§ 256b wide (64bx4)

§ 8-source (VRF banks) x 10-dest (FIFO 

buffers)

§ Registered boundaries (for timing)

§ All-to-all output log-interconnect

§ 256b wide (64bx4)

§ 4-source (out FIFO buffers) x 8 dest (RF 
banks)

§ Fixed-priority arbiter

§ !" > !$ > !% > !&
§ VRF is built as 1RW SRAM banks

§ Writes have lower priority than reads –
unless output queue is full
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§ Consider the execution of the following instruction
vmadd vd, vsa, vsb, vsc, vsmask

§ Worst case in terms of banking factor
§ 4 reads + 1 write per cycle
§ Banking factor = 1,75

§ We take a vector of length 256 (ideally 64 cycles to run)
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Execution of a FMA instruction
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Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

M A B C A

B

Mask

C

0 0 0 0

Cycle count: 1
FMA Utilization: 0/1 = 0%

The first  4 elements of all 4 operands are in Bank 0
3 access stalled due to banking conflicts
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Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

1 0 0 0

Cycle count: 2
FMA Utilization: 0/2 = 0%
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Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

2 1 0 0

Cycle count: 3
FMA Utilization: 0/3 = 0%
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Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

6 5 4 3

Cycle count: 7
FMA Utilization: 1/7 = 14%
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Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

7 6 5 4

Cycle count: 8
FMA Utilization: 2/8 = 25%
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Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

3 2 1 0

Cycle count: 12
FMA Utilization: 6/12 = 50%

0
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Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

4 3 2 1

Cycle count: 13
FMA Utilization: 7/13 = 54%

0
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Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

5 4 3 2

Cycle count: 14
FMA Utilization: 8/14 = 57%

1
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Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

6 5 4 3

Cycle count: 15
FMA Utilization: 9/15 = 60%

2



|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 23

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

Cycle count: 69
FMA Utilization: 63/69 = 91%

0



|| 12.4.2018Matheus Cavalcante and Fabian Schuiki 24

Execution of a FMA instruction

Operand
Request

VRF
Priority
Arbiter

FMA

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

M A B C A

B

Mask

C

Cycle count: 70
FMA Utilization: 64/70 = 91%

1
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Final result 
written to regfile

Hardware Support for Vector Reductions
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! = #
$
%$ & '$

§ Triggered by VMADD instruction with scalar result register
§ Executed on FMA units by feeding results back in as operand C
§ E.g. Reduction of 64-element vector:

§ Avg. utilization in this case 36% ( (
()*&+,, - = 64)

FMA

0 = 1 & 2 + 4
5 cycles latency

A

B

C

Y

Lane 1

cycles

Lane 2

Lane 3

Lane 4

Accumulation Phase
16 cycles

20 partial sums (5 latency x 4 lanes)

Merge Results in each Lane
17 cycles

4 partial sums (4 lanes)

Merge Lanes
12 cycles

1 final sum

100% util. 24% util. 6.3% util.
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Ways to Improve Reductions
§ Current Implementation (constant 29 cycle tail):

§
!

!"#$%& (36% for 64-element vector)

§ Future Improvement A:

§ Schedule FPU operations of next instruction in gaps of the reduction

§ Utilization improves to 
!

!"'& (77% for 64-element vector)

§ Future Improvement B:

§ Add separate reduction adder

§ Utilization improves up to 100%, since reduction tail not eating away performance
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Lane 1

cycles

Lane 2

Lane 3

Lane 4

Instruction A Instruction B

Lane 1

cycles

Lane 2

Lane 3

Lane 4

Reduction Adder

Instruction A Instruction B Instruction C

Low Hardware Cost 

(More Complex FSM)

Significant Hardware Cost 

(Separate FP ADD Unit)
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Benchmarks
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ARA and Ariane – Peak performance

Compute bound
8 op/cycle

Mem
ory 

bound

8B
/cy

cle

Compute bound
2 op/cycle

Performances we 
must achieve!
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§ Can we achieve 8 GFLOPs peak performance?
§ Upper-bound: four FMAs working at 100%

§ Three key kernels:
§ Multiply-add (DAXPY): heavily memory-bound
§ Convolution (DCONV): compute-bound
§ Matrix-multiplication (DGEMM): compute-bound

§ Cycle-accurate simulation from the RTL
§ We ignore the initial set-up cycles (around 40 cycles)
§ Startup, instruction fetch, decoding, vector unit configuration…
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Benchmarks
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§ Strip-mined loop over the ! elements of 
vectors " and #

§ Operational intensity
§ 3×8! = 24! bytes of memory transfers
§ 2! operations (multiply-adds)

§
/
/0 operations per byte

§ Memory-bound
§ We’ll be far from 8 GFLOPs!
§ But are we close to the performance limit?
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DAXPY: 1 ← 34 + 1
// Read scalar a
vins va, a, zero;

while (n != 0) {
// Stripmined loop
size_t vl = setvl(n); 

// Read x and y
vld vx, x;
vld vy, y;

// vy = va . vx + vy
vmadd vy, va, vx, vy;

// Store y
vst vy, y;

// Bump pointers
x += vl; y += vl; n -= vl; 

}
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Vector 
Length

FPU Utilization 
(%)

Performance
(op/cycle)

32 5,6% 0,45
64 6,6% 0,53

128 7,3% 0,59
256 7,7% 0,62
512 8,0% 0,64

1024 8,1% 0,65
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DAXPY: Performance

§ We achieve what we could in terms of perf

§ Can’t expect 8 GFLOPs from a memory-bound kernel

§ Ops/cycle grows to 8 if we increase memory port 
width  (e.g. 128b à 2x perf)
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§ Kernel particular for CNNs
§ Convolution kernel size: 7 channels, each 3×3
§ Image size: 7 channels, each #×1

§ Operational intensity
§ 3×3×8×7# = 504# bytes of memory transfers
§ 882# operations (multiply-adds)
§ 1,75 operations per byte

§ Compute-bound kernel
§ It should be possible to achieve 8 ops/cycle
§ Scheduling is key
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DCONV: 2 = 3 ∗ 5

LOAD

EXECUTE

LOAD

EXECUTE

t

Penalty



||

Vector 
Length

FPU Utilization
(%)

Performance
(op/cycle)

32 19,8% 1,58
64 36,1% 2,89

128 61,5% 4,92
256 82,1% 6,57
512 82,3% 6,59

1024 82,5% 6,60
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DCONV: Performance

§ Initial banking conflicts limit performance
§ Performance goes up until strip-mining loop 

comes to play
§ Unroll strip-mining: programmability?
§ Hard to hide all the memory transfers (initial 

loads and final stores)
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§ BLAS-3 routine
§ Common kernel in several applications

§ High data reuse
§ When the kernel is compute-bound, it should 

be possible to achieve 8 ops/cycle

§ Operational intensity
§ 8×3$% = 24$% bytes of memory transfers
§ 2$. operations (multiply-adds)
§

/
0% operations per byte

§ If $ ≤ 12, kernel is memory-bound by ARA’s 
VLSU unit
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DGEMM: 3 ← 567+ 93
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Vector 
Length

FPU Utilization
(%)

Performance
(op/cycle)

32 19,2% 1,54

64 37,8% 3,02

128 70,3% 5,62

256 84,7% 6,77
512 85,5% 6,84

1024 86.3% 6,91
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DGEMM: Performance

§ We see the same phenomena seen with DCONV
§ Initial banking conflicts limiting performance with 

shorter vectors
§ Strip-mining and unmaskable memory transfers 

limiting steady performance
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So.. can we achieve 8 GFLOPs?
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Implementation results
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ARA: GF FDX22 1GHz implementation (SS, 0.72V, 125 ºC)

Ariane
36%

D$

I$

ARA
64%

VRF

1.3mm

0.
7m

m Critical path
45 gates
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EX
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M
U

L

Cache

§ ARA is 1.8× bigger than Ariane…
§ and has 4× its computational power

§ Operation density:
§ Ariane: 7,27 GFLOPS/mm2
§ ARA: 16,23 GFLOPS/mm2
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Ara and Ariane – Area breakdown
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Conclusions
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§ Higher operational intensity → minimize data transfers
§ By shuffling and reordering data inside vector registers

§ Only two* instructions available
§ vslide: vd{i} = vs1{i + rs2}
§ vrgather: vd{i} = vs1{ vs2{i} }

§ Register-gather is too general → hard to optimize!
§ Dedicated instructions to more specific shuffling: permutations, rotations?

*(three, more recently, as vslide was split into vslideup and vslidedown)
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Shuffling instructions
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§ We did benefit from decoupling the scalar and the vector unit

§ Different “worlds”
§ Scalar unit: speculative, one instruction issued per cycle, several in-flight instructions
§ Vector unit: non-speculative, latency-tolerant, high throughput, a few in-flight vector instructions

§ We see with apprehension ISA decisions that push towards their recoupling
§ E.g., the recent decision of mapping the vector registers over the floating-point registers
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Decoupling between scalar and vector units
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§ ARA supports mixed-precision to a certain 
extent

§ Previous versions allowed for a mixed-
precision instruction as 64b ← 8b + 8b
§ 8b, 16b and 32b operands could be promoted 

to 64b operands
§ High hardware cost!

§ We now allow for a more restricted set of 
type promotions
§ 8 → 16b, 16 → 32b and 32 → 64b
§ Aligned with newer revisions of the V Extension
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Mixed-precision
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§ ARA: 64-bit vector processor
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Wrapping up...
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