

DARKSIDE: 2.6GFLOPS, 8.7mW Heterogeneous RISC-V Cluster for Extreme-Edge On-Chip DNN Inference and Training

<u>A. Garofalo</u>, M. Perotti, L. Valente, Y. Tortorella, A. Nadalini, L. Benini, D. Rossi and F. Conti

DEI, University of Bologna, Italy & IIS, ETH Zurich, Switzerland

angelo.garofalo@unibo.it

Introduction and Motivation

- Darkside: Heterogeneous SoC Architecture
 - RVNN Cores
 - Depth-wise Engine
 - DataMover
 - Tensor Product Engine
- □ Chip Results Summary
 - Implementation Results
 - Benchmarking
 - Comparison with State-of-the-Art
- Conclusion

Introduction and Motivation

□ TinyML: Deploy DL and ML at the Extreme-Edge of IoT

- AI-enhanced IoT Applications;
- Reduced privacy issues, lower transmission power ...

Challenges

- High computational and memory requirements (ML + DL);
- On-Chip Inference and Training within a power budget typical of MCU-class of devices (few hundreds mW).

Opportunities

- Reduced precision ML & DL models (both integer and floating-point);
- Low-Bitwidth Mixed-Precision integer computation;
- Specialized acceleration solutions (MAC, SIMD, Vectors, systolic arrays..).

3 of 20

Reduced Precision DL Models

DNN Inference: <u>Mixed-precision integer arithmetic</u>

Quantization Method	Top1 Accuracy			Weight Memory Footprint			
Full-Precision	70.9%	T			16.27 MB	I.	
INT-8	70.1%			0.8%	4.06 MB 🔶	Γ	4 x
INT-4	66.46%			4.4%	2.35 MB	¥	7 x
Mixed-Precision	68%			2.9%	2.09 MB		8 x

Courtesy of Rusci M. «Example on MobilenetV1_224_1.0.»C

□ On-Chip Training (Continual, Federated Learning..):

□ <u>Floating-Point Arithmetic (16-bits) required</u>

(*) Bianco, Simone, Remi Cadene, Luigi Celona, and Paolo Napoletano. "Benchmark analysis of representative deep neural network architectures." IEEE Access 6 (2018): 64270-64277.

Extreme-Edge AI Computing Platforms

	ASICs	FPGAs	MCUs
Throughput [Gop/s]	1 K – 50 K	10 - 200	0.1 – 2
Energy Efficiency [Gop/s/W]	10 K – 100 K	1 - 10	1 – 50
Flexibility/Programmability	Low	Medium	High

IoT End-Nodes scenario (MCUs):

- Lack of support for mixed-precision integer arithmetic at ISA level (RISCV, ARM); → Huge Overhead!
- Missing-low power specialized solutions to speed-up low-reuse kernels, compute-intensive floating-point workloads.

This Work:

- Heterogeneous Compute Cluster:
 - □ Enhanced RISC-V cores with advanced integer mixed-precision capabilites;
 - □ Tightly-Coupled Specialized accelerators to boost heavy kernels dominating the workload;

Mixed-Precision kernel: RISC-V Assembly

p.lw x10,4(x4!)

- p.lw x11,4(x5!)
- \rightarrow p.extract x5, x11, 4, 0
- \rightarrow p.extract x6, x11, 4, 4
- \rightarrow p.extract x7, x11, 4, 8
 - → p.extract x8, x11, 4, 12
- pv.packlo.b x15, x5, x6
 - → pv.packhi.b x15, x7, x8

pv.sdotsp.b x20, x15, x10

Introduction and Motivation

Darkside: Heterogeneous SoC Architecture

- RVNN Cores
- Depth-wise Engine
- DataMover
- Tensor Product Engine
- □ Chip Results Summary
 - Implementation Results
 - Benchmarking
 - Comparison with State-of-the-Art

Darkside Architecture

- □ 8 **RVNN** cores (32-b custom RISC-V ISA);
- Depth-wise Engine (**DWE**) to boost low-reuse depthwise;
 - Tensor Product Engine (**TPE**) to boost IEEE FP16 MatMuls;
- DataMover for efficient data marshalling;
- Accelerators encapsulated within standardized Hardware Processing Engine (HWPE) interface;
- Heterogeneous Cluster
 Interconnect (HCI) for
 tightly-coupled integration;
- DMA Controller for Double Buffering/DNN model tiling;
- HW synchronization unit for efficient parallelization and event-based execution.

Darkside Execution Model

- TCDM as tightly-coupled memory buffer for all the compute units of the cluster:
- Efficient cooperation among hardware compute units;
- Support complex ML and DL execution models (e.g. full MobileNetV2, FC Autoencoder);

RVNN Cores µArchitecture

Mac-Load: MatMul Inner Kernel ESSDER

□ Up to 94% of SIMD Dotp Unit Utilization on MatMul kernels

Up to **12.7x** performance improvements over RI5CY on mixed-precision MatMul kernels

MILAN 2022

MILAN 2022 Depth-Wise Engine & DataMover

DataMover:

- □ 1b-32b configurable precision on-the-fly efficient data transposition;
- Up to **100x** less transposition time than SW (scales with precision of data to transpose);

54 kGE.

Depth-Wise Engine (DWE):

- Boost low-reuse 8-bit (integer) 3x3 Depth-wise convolutions;
- Weight-Stationary Data Flow to maximize data reuse;
- Fully exploit memory bandwidth of 36B/cyc through shallow HCI branch;
- Peak performance of **30 MAC/cycle**;
- 131 kGE.

Angelo Garofalo

Tensor Product Engine

Boost IEEE FP16 Matrix Multiplications;

- array of 32 FMA Units, organized over 8 rows and 4 columns;
- □ FMAs cascaded along the rows;
- □ Trade-off between performance and area;

Execution scheduling optimized:

- □ Streaming always overlaps computation;
- □ Data reuse is maximized;
- **98%** of FMAs Utilization;
- Near-to-ideal performance: **31.6 GMAC/cycle** (ideal is 32 GMAC/cycle);
- Up to 22x Speed-Up over SW MatMuls execution;

Bottleneck Layer

- Introduction and Motivation
- Darkside: Heterogeneous SoC Architecture
 - RVNN Cores
 - Depth-wise Engine
 - DataMover
 - Tensor Product Engine

Chip Results Summary

- Implementation Results
- Benchmarking
- Comparison with State-of-the-Art

Chip Results Summary

Performance vs. Energy Efficiency

- ASIC-like efficiency on low-bitwidth integer workloads;
- IEEE FP16 MatMuls on TPE delivers **17.7x** better performance, **21.8x** better energy efficiency than SW execution.

TinyML Benchmarks

End-to-End Inference

- □ Mixed-Precision MobileNetV2:
 - \Box ~1MB footprint;
 - □ 69.4% Top-1 Accuracy;
- Optimized execution flow for efficient L2-L1 data movements [Burr21];
- Performance: 20 frame/s (@290 MHz);
- □ Energy per Inference: **9.1 mJ** (65nm).

On-Chip Training

- □ FC TinyML AutoEncoder
- One training epoch benchmarked
 - Full forward, backward steps and weight updates;
- □ Latency: **1.8 ms** (@290 MHz);
- **Ε**nergy: **345 μJ**;

[Burr21]: Burrello, A., et al.. Dory: Automatic end-to-end deployment of real-world dnns on low-cost iot mcus. *IEEE Transactions on Computers*

Comparison with SoA

	SleepRunner	SamurAI	VEGA	Dustin	This work
Technology	<u>28nm</u>	<u>28nm</u>	<u>22nm</u>	<u>65nm</u>	65nm
CPU	1xCM0DS	1xRI5CY	10x RI5CY	16x MPIC (RV)	8xRV-NN (RV)
INT Precision	32b	8b-32b	8b-32b	2b-32b mixed-precision	2b-32b mixed-precision
FP Precision			FP32, FP16, bfloat		FP32, FP16 🗡
Best Int Perf. Best.Int Eff. @ Perf. (8-bit)	31 MOPS, 97MOPS/mW @18 MOPS	1.5 GOPS, 230 GOPS/W @110 MOPS	15.6 GOPS, 614 GOPS/W @7.6 GOPS	15 GOPS, 303 GOPS/W @ 4.4 GOPS	17 GOPS, 191 GOPS/W @2.4 GOPS
Best FP32 Perf. Best. FP32 Eff. @ Perf.			2 GFLOPS, 79 GFLOPS/W @ 1 GFLOPS		1.03 GFLOPS, 12 GFLOPS/W @ 0.4 GFLOPS
Best IEEE FP16 Perf. Best. IEEE FP16 Eff. @ Perf.			3.3 GFLOPS, 129 GFLOPS/W @1.27 GFLOPS		18.2 GFLOPS, 300 GFLOPS/W @2.6 GFLOPS

- Introduction and Motivation
- Darkside: Heterogeneous SoC Architecture
 - RVNN Cores
 - Depth-wise Engine
 - DataMover
 - Tensor Product Engine
- □ Chip Results Summary
 - Implementation Results
 - Benchmarking
 - Comparison with State-of-the-Art

- Darkside: Low-Power Heterogeneous Compute Cluster for in **65nm**;
- RVNN cores with 2b-to-32b mixed-precision integer computing capabilities and Mac-Load instructions (2x to 12.7x speed-up over RI5CY on linear kernels);
- □ Tightly-Coupled Accelerators to boost depth-wise kernels (up to **10x** speed-up over SW) and data marshalling operations (up to **100x** speed-up over SW);
- Tensor Product Engine (TPE) to boost FP16 MatMuls, achieving 300 GFLOPS/W within only 8.7 mW;
- End-to-end inference and training workloads (full MobileNetV2, FC AutoEncoder) with better or comparable metrics than SoA solutions;
- Darkside is competitive with IoT end-nodes using much more scaled technology nodes (Peak Integer Perf. 65 GOPS, En. Eff. 835 GOPS/W; Peak FP Perf. 18.2 GFLOPS, En. Eff. 300 GFLOPS/W);