EHzürich

Compressing Subject-specific Brain-Computer Interface Models into One Model by Superposition in Hyperdimensional Space

22 April 2020

Michael Hersche

Philipp Rupp

Luca Benini

Abbas Rahimi

Integrated Systems Laboratory D-ITET ETH Zürich Towards wearable embedded Motor-Imagery Brain – Computer Interfaces (MI-BCIs)

Towards wearable embedded Motor-Imagery Brain – Computer Interfaces (MI-BCIs)

Why embedded embedded MI-BCI?

- User comfort
- Latency
- Security & privacy
- Long-term usability

Subject-specific models pose a challenge for embedded MI-BCIs

 MI-Brain signals are highly subject dependent

⇒Need to train subject-specific models

- Store multiple subject-specific models on device
 - Device for multiple subjects
 - Model selection on unseen subjects
- We need to reduce memory footprint!

Global Model

Global	model

Quantization

This Work: Model compression by hyperdimensional superposition

- Compress subject-specific CNN models with superposition
- Novel retraining method to counteract compression noise
- Compress two compact SoA CNNs by up to 3x with slightly better accuracy
 - Shallow ConvNet +1.46%
 - EEGNet +2.41%

The BCI competition IV-2a dataset is still a big challenge

- 9 subjects
- 2 sessions per subject: training and test set
- 288 trials per session and subject
- 4 different MI tasks initiated by visual cue
 - Left hand/right hand/feet/tongue
- 22 EEG channels sampled with 250 Hz

Shallow Convnet¹ is a **light-weight** and **accurate** CNN for MI classification

[1] Schirrmeister et al., "Deep learning with convolutional neural networks for EEG decoding and visualization," Human Brain Mapping 2017

Orthogonalization by key-value binding in hyperdimensional space

Orthogonalized key-value pairs are **superimposed and retrieved** in hyperdimensional space

1) Superimpose multiple key-value pairs

$$S = \sum_{i} K_i \circledast W_i$$

 $W \in \mathbb{R}^{d} - \text{value}$ $K \in \mathbb{R}^{d}, K \sim N(0, \frac{1}{d}I_{d}) - \text{key}$ $\circledast - \text{circular convolution}$ $\odot - \text{circular correlation}$

2) Retrieve values

$$\widehat{W_k} = K_k \odot S = K_k \odot K_k \circledast W_k + \sum_{i \neq k} K_k \odot K_i \circledast W_i = W_k + n$$

Key-weight binding of compressible weights

Approximate retrieval from compressed representation yields **huge accuracy loss**

for *i* =1:Ns

1) Retrieve weights for subject *i*

2) Retrain model for subject i

3) Update compressed representation

for *i* =1:Ns

- 1) Retrieve weights for subject *i*
- 2) Retrain model for subject i
- 3) Update compressed representation

for *i* =1:Ns

- 1) Retrieve weights for subject *i*
- 2) Retrain model for subject i
- 3) Update compressed representation

for *i* =1:Ns

- 1) Retrieve weights for subject *i*
- 2) Retrain model for subject i
- 3) Update compressed representation

Retraining recovers the performance on training set

Randomized subject ordering and

hyperparameter selection improve iterative retraining

Randomized subject ordering

⇒Change subject order after every retraining iteration

- Hyperparameter selection
 - 5-fold cross-validation on training set
 - Find best hyperparameters
 - Batch size
 - Number of epochs per iteration
 - Learning rate
 - Number of retraining iterations

Session 1 (Training & Validation)

Retraining recovers the misclassification on validation set

With retraining we compress FC or Conv layer with no accuracy loss

Superposition even compresses tiny EEGNet

Our compression improves both Shallow ConvNet and EEGNet

Conclusion

- Hyperdimensional superposition compresses already compact MI-BCI CNN models
- Iterative retraining recovers loss
- Compress two SoA light-weight networks
 - Shallow ConvNet (47k weights) by 3x at 1.46% higher accuracy
 - EEGNet (2.5k weights)
 by 1.9x at 2.41% higher accuracy
- Code is available!

https://github.com/MHersche/bci-model-superpos

EHzürich

Compressing Subject-specific Brain-Computer Interface Models into One Model by Superposition in Hyperdimensional Space

22 April 2020

Michael Hersche

Philipp Rupp

Luca Benini

Abbas Rahimi

Integrated Systems Laboratory D-ITET ETH Zürich