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Towards wearable embedded Motor-Imagery
Brain — Computer Interfaces (MI-BCls)
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Towards wearable embedded Motor-Imagery
Brain — Computer Interfaces (MI-BCls)

Embedded
MI-BCI

Why embedded embedded MI-BCI?
= User comfort

= Latency

= Security & privacy

" Long-term usability



Subject-specific models pose a
challenge for embedded MI-BCls

= MI-Brain signals are highly Embedded

subject dependent
—Need to train subject-specific models

= Store multiple subject-specific
models on device

= Device for multiple subjects

= Model selection on unseen subjects
* We need to reduce memory footprint!
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This Work: Model compression by

hyperdimensional superposition
= Compress subject-specific CNN models with superposition

= Novel retraining method to counteract compression noise

= Compress two compact SoA CNNs by up to 3x with slightly better
accuracy

= Shallow ConvNet +1.46%
= EEGNet +2.41%




The BCl competition IV-2a dataset is still a big challenge

= 9subjects

= 2 sessions per subject: training and test set

= 288 trials per session and subject

= 4 different Ml tasks initiated by visual cue
= Left hand/right hand/feet/tongue

= 22 EEG channels sampled with 250 Hz

Session 1 (Training) Session 2 (Testing)
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Shallow Convnet!is a light-weight
and accurate CNN for Ml classification
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47,240 weights

One model per subject (sub-spec)

74.3% on 4-class Ml

[1] Schirrmeister et al. , “Deep learning with convolutional neural networks for EEG decoding and visualization,” Human Brain Mapping 2017



Orthogonalization by key-value binding
in hyperdimensional space

Binding
Vi=K; ® W,

Retrleval
= K; @ 4

Values Key-value pairs Retrieved values
(orthogonal)




Orthogonalized key-value pairs are superimposed
and retrieved in hyperdimensional space

1) Superimpose multiple key-value pairs W eR? —value

K € R, K ~N(0 ,%Id) — key
S = Z K; ® W; ® — circular convolution
i (O — circular correlation

2) Retrieve values

P =Kk®S=Kk®Kk®Wk+sz@Ki®Wi=Wk+n
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Key-weight binding of compressible weights

model size
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Superposition of key-value pairs reduces the memory
footprint while staying in same dimensionality
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Superposition of key-value pairs reduces the memory
footprint while staying in same dimensionality
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Superposition of key-value pairs reduces the memory
footprint while staying in same dimensionality
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Superposition of key-value pairs reduces the memory
footprint while staying in same dimensionality
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Compression Rate = o= :
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Approximate retrieval from compressed
representation yields huge accuracy loss
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Iterative Retraining

d weights model 1




Iterative Retraining

Retraining

d weights model 1
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"Subject 1"

fori=1:Ns
1) Retrieve weights for subject i
2) Retrain model for subject i
3) Update compressed representation




Iterative Retraining

Retraining

d weights model1
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Iterative Retraining

Retraining
d weights model 2
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1) Retrieve weights for subject i
2) Retrain model for subject i
3) Update compressed representation




Iterative Retraining

Retraining

d weights model Ns
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1) Retrieve weights for subject i
2) Retrain model for subject i
3) Update compressed representation




Retraining recovers the performance on training set
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Randomized subject ordering and

hyperparameter selection improve iterative retraining
= Randomized subject ordering
—Change subject order after every retraining iteration

= Hyperparameter selection

= 5-fold cross-validation on training set
Session 1 (Training & Validation)

" Find best hyperparameters - ~
= Batch size Sub 1
= Number of epochs per iteration Sub 2
= Learning rate
. . . . Sub 9
= Number of retraining iterations \ y,




Retraining recovers the misclassification on validation set
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With retraining we compress FC or Conv layer with no accuracy loss
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Superposition even compresses tiny EEGNet
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Our compression improves both Shallow ConvNet and EEGNet
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Conclusion

"= Hyperdimensional superposition compresses already compact MI-BCI
CNN models

= |terative retraining recovers loss

= Compress two SoA light-weight networks

= Shallow ConvNet (47k weights)
by 3x at 1.46% higher accuracy

"= EEGNet (2.5k weights)
by 1.9x at 2.41% higher accuracy

= Code is available!

https://github.com/MHersche/bci-model-superpos
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