
PULP PLATFORM
Open Source Hardware, the way it should be!

http://pulp-platform.org @pulp_platform https://www.youtube.com/pulp_platform

Low Power Multicore Solutions for Approximation

Luca Benini <lbenini@iis.ee.ethz.ch,luca.benini@unibo.it>

|

ML Processors from Tiny to Huge
[ReutherHPEC22]

2

|

CloudML TinyML

3

TinyML challenge
AI capabilities in the power envelope of an MCU: 10-mW peak (1mW avg)

TinyML Opportunity
[ABI research 21]

|

TinyML Workloads – DNNs (and More)

High OP/B ratio
Massive Parallelism
MAC-dominated
Low precision OK

4

H Pham 2021(Google) arXiv:2003.10580v3

90.2%, 480M-param, many GOPS

5M-param

70%, “Tiny” DNNs

“Model zoo”: very fast evolution need programmable solutions

|

ML on MCUs?

5

High performance MCUs

Low
-Pow

er M
C

U
s

Courtesy of J Pineda, NXP + Updates

1TOPS/W=1pJ/OP TinyML (1GOPs/Inf) @10fps in 10mW

|

Energy efficiency @ GOPS is the Challenge

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 2.5 3 3.5 4 4.5 5 5.5

Ef
fic

ie
nc

y
(c

or
em

ar
k/

uW

Performance (coremark/MHz)

ARM Cortex-M MCUs: M0+, M4, M7 (40LP, typ, 1.1V)*

M0+

M4

M7

High performance MCUs

*data from ARMs web

En
er

gy
-e

ffi
ci

en
tM

C
U

s

|

18

[AziziISCA10]

P
C

I
F
/I
D

I
D
/
E
X

E
X
/

W
B

PC
gen

Align and
Decompress

Decode
operands

fwd

Rd
RF

A
G
U

E
X

Instr Memory
Data Memory

Wr
RF

Instr Address Instr Data
Data Address Data

Jumps

Branches

The Tunnel: High-Performance vs. Energy-Efficient

 “Classical” core performance scaling trajectory
 Faster CLK deeper pipeline IPC drops

 Recover IPC superscalar ILP bottleneck (dependencies)

 Mitigate ILP bottlenecks OOO huge power, area cost!

|

A way Out: Processor Specialization

8

RISC V1

V2
V3

Extensions for Data Processing
Data motion (e.g. auto-increment)
Data processing (e.g. MAC)

V2

Domain specific data processing
Narrow bitwidth
HW support for special arithmetic

V3

Baseline RISC (not good for ML)V1

ISA extension cost 25 kGE 40 kGE (1.6x), energy efficient if 0.6Texec

3-cycle ALU-OP, 4-cyle MEM-OP only IPC loss: LD-use, Branch

70% RF+DP

M/D

ALU

RF

[Gautschi et al. TVLSI 2017]

P
C

I
F
/I
D

I
D
/
E
X

E
X
/

W
B

PC
gen

Align and
Decompress

Decode
operands

fwd

Rd
RF

A
G
U

E
X

Instr Memory
Data Memory

Wr
RF

Instr Address Instr Data
Data Address Data

Jumps

Branches

Rd RF

EX

|

RISC-V Instruction Set Architecture
 Started by UC-Berkeley in 2010
 Contract between SW and HW
 Partitioned into user and privileged spec
 External Debug

 Standard governed by RISC-V foundation
 ETHZ is a founding member of the foundation
 Necessary for the continuity

 Defines 32, 64 and 128 bit ISA
 No implementation, just the ISA
 Different implementations (both open and close source)

 At ETHZ+UNIBO we specialize in
efficient implementations of RISC-V cores

SW

HW

ISA
User Privileged

Applications

OS

D
eb

ug

9

|

RISC-V Foundation Members

A modern, open, free ISA, extensible by construction
Endorsed and Supported by 1000+ Companies

10

|

RISC-V ISA Baseline and Extensions
 Kept very simple and extendable
 Wide range of applications from IoT to HPC

 RV + word-width + extensions
 RV32IMC: 32bit, integer, multiplication, compressed

 User specification:
 Separated into extensions, only I is mandatory

 Privileged Specification (WIP):
 Governs OS functionality: Exceptions, Interrupts
 Virtual Addressing
 Privilege Levels

I Integer instructions (frozen)

E Reduced number of registers

M Multiplication and Division
(frozen)

A Atomic instructions (frozen)

F Single-Precision Floating-
Point (frozen)

D Double-Precision Floating-
Point (frozen)

C Compressed Instructions
(frozen)

X Non Standard Extensions

11

|

Baseline + Extensins in a Page

Ba
sic

 In
st

ru
ct

io
ns

 (I
)

Privilege
Mode

Compressed
Instructions (C)

Fl
oa

tin
g

Po
in

t E
xt

en
sio

ns

Multiply/Divide (M)

Atomic Extensions (A)

12

|

RISC-V Architectural State
 There are 32 registers, each 32 / 64 / 128 bits long
 Named x0 to x31
 x0 is hard wired to zero
 There is a standard ‘E’ extension that uses only 16 registers (RV32E)

 In addition one program counter (PC)
 Byte based addressing, program counter increments by 4/8/16

 For floating point operation 32 additional FP registers
 Additional Control Status Registers (CSRs)
 Encoding for up to 4’096 registers are reserved. Not all are used.

13

|

RISC-V Instructions four basic types
 R register to register operations
 I operations with immediate/constant values
 S / SB operations with two source registers
 U / UJ operations with large immediate/constant value

14

|

RISC-V is a load/store architecture
 All operations are on internal registers
 Can not manipulate data in memory directly

 Load instructions to copy from memory to registers
 R-type or I-type instructions to operate on them
 Store instructions to copy from registers back to memory
 Branch and Jump instructions
 1/3 ALU utilization if operands are from/to memory (LD, ALU, ST)

15

|

 Reserved opcodes for standard extensions
 Rest of opcodes free for custom implementations
 Standard extensions will be frozen/not change in the future

Encoding of the instructions, main groups

Extensibility is integral to RISC-V ISA design!

16

|

How to get efficiency: ISA extensions

19

1. Post modified LD/ST
2. MAC
3. HW loop
4. Packed-SIMD operations with dot product
5. Shuffle operations for vectors
6. Mac-load

M. Gautschi et al., "Near-Threshold RISC-V Core With DSP Extensions for
Scalable IoT Endpoint Devices," in IEEE TVLSI, Oct. 2017.

addi a0,a0,1
addi t1,t1,1
addi t3,t3,1
addi t4,t4,1
lbu a7,-1(a0)
lbu a6,-1(t4)
lbu a5,-1(t3)
lbu t5,-1(t1)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
bne s5,a0,1c000bc

Only one MACs every 4 cycles!

|

Post increment LD/ST

18

 Automatic address update
 Update base register with computed

address after the memory access
⇒Save instructions to update address

register
 Post-increment:
 Base address serves as memory address

 Offset can be stored in:
 Register
 Immediate ⇒save 2 additional instructions to update

the read addresses of the operands!

addi x4, x0, 64
Lstart :
lb x2, 0(x10)
lb x3, 0(x12)
addi x10, x10, 1
addi x12, x12, 1
…..
bne x2,x3, Lstart

Auto-incr load/storeOriginal RISCV

addi x4, x0, 64
Lstart :
lb x2, 0(x10!)
lb x3, 0(x12!)
…..
bne x2,x3, Lstart

c = 0;
for(i=0;i<100;i++)

c = c + a[i]*b[i];

|

Hardware loops

//initialize counter
mv x4, 100
// init accumulator
mv x5, 0
Lstart:

//decrement counter
addi x4, x4, -1
//load elements from mem
lw x8, 0(x9)
lw x10, 0(x11)
//update memory pointers
add x9, x9, 4
add x11, x11, 4
//mac
mul x8, x8, x10
add x5, x5, x8

bne x4, x0, Lstart

HW Loop ExtOriginal RISC-V
// init accumulator
mv x5, 0
//set number iterations, start and end of the loop
lp.setupi 100, Lend

//load elements from mem
lw x8, 0(x9)
lw x10, 0(x11)
//update memory pointers
add x9, x9, 4
add x11, x11, 4
//mac
mul x8, x8, x10

Lend: add x5, x5, x8

No counter and branch
overhead!

c = 0;
for(i=0;i<100;i++)

c = c + a[i]*b[i];

 Hardware loop setup with:
 3 separate instructions

lp.start, lp.end, lp.count,
lp.counti
⇒ No restriction on start/end address

 Fast setup instructions
lp.setup, lp.setupi

⇒ Start address= PC + 4
⇒ End address= start address + offset
⇒ Counter from immediate/register

19

|

Multiply Accumulate
 Accumulation on 32 bit data p.mac

 Directly on the register file

 Pro:
 Faster access to mac accumulation
 Single cycle mult/mac

 Cons:
 Additional read port on the register file
 used for pre/post increment with register

20

Acc A B

MAC Unit
x

+

int acc=0, coeff[N], inp[N];

for(int i=0; i<N; i++)

acc += coeff[i] * inp[i];

acc =__builtin_pulp_mac (inp[i],
coeff[i],
acc);

Intrinsics: special functions that map directly to inlined
DSP instructions.
However, the compiler can already place the p.mac
instruction into the above code!

|

Xpulp Extentions: packed-SIMD

 packed-SIMD extensions
 Make usage of resources the best in performance with little overhead
 Target for embedded systems, RVV is for high performance

 pSIMD in 32bit machines
 Vectors are either 4 8bits-elements or 2 16bits-elements

 pSIMD instructions

Computation add, sub, shift, avg, abs, dot product

Compare min, max, compare

Manipulate extract, pack, shuffle

Remember: DNN inference is OK with low-bitdwidth operands

21

|

Xpulp Extensions: packed-SIMD

 Same Register-file
 The instruction encode how to interpret the content of the register

add rD, rs1, rs2 rD = 0x03020100 +
0x0D0C0B0A

add.h rD, rs1, rs2 rD[0] = 0x0100 + 0x0B0A
rD[1] = 0x0302 + 0x0D0C

add.b rD, rs1, rs2 rD[0] = 0x00 + 0x0A
rD[1] = 0x01 + 0x0B
rD[2] = 0x02 + 0x0C
rD[3] = 0x03 + 0x0D

0x03 0x02 0x01 0x00

0x0D 0x0C 0x0B 0x0A

rs1

rs2

22

|

 Advanced ALU for Xpulp extensions

 Optimized datapath to reduce
resources

 Multiple-adders for round

 Adder followed by shifter for fixed
point normalization

 Clip unit uses one adder as
comparator and the main
comparator

ALU architecture

23

|

Expanding SIMD Dot Product
 Dot Product: (half word example)

C[31:0] = A[31:16]*B[31:16] + A[15:0]*B[15:0] + C[31:0]

 2 multiplications, 1 addition, 1 accumulation in 1 cycle (2x for bytes)

24

32 bit32 bit32 bit

35:2 compressor

Partial Product
Generator

|

16x16b with sign selection for short
multiplications [with round and
normalization]. 5 cycles FSM for higher 64-
bits (mulh* instructions)

32x32b single cycle MAC/MUL unit

16x16b short parallel dot product

8x8b byte parallel dot product

clock gating to reduce switching activity
between the scalar and SIMD multipliers

MUL architecture

25

|

Dot-product without accumulation between unsigned char vectors (v4u):

S = __builtin_dotup4(A, B); // S = A[0]*B[0] + A[1]*B[1] + A[2]*B[2] + A[3]*B[3], A is v4u, B is v4u

Dot-product without accumulation between signed char vectors (v4s):

S = __builtin_dotsp4(A, B); // S = A[0]*B[0] + A[1]*B[1] + A[2]*B[2] + A[3]*B[3] , A is v4s, B is v4s

Also with mixed signs:

S = __builtin_dotusp4(A, B); // S = A[0]*B[0] + A[1]*B[1] + A[2]*B[2] + A[3]*B[3] , A is v4u, B is v4s

Similar builtins without accumulation for short vectors:

S = __builtin_dotup2(A, B); S = __builtin_dotsp2(A, B); S = __builtin_dotusp2(A, B);

All of these are also available with accumulation (over accumulator S):

S = __builtin_sdotup4(A, B, S); S = __builtin_sdotsp4(A, B, S); S = __builtin_sdotusp4(A, B, S);

S = __builtin_sdotup2(A, B, S); S = __builtin_sdotsp2(A, B, S); S = __builtin_sdotusp2(A, B, S);

Reference & Examples on Compiler Builtins
Computation add, sub, shift, avg, abs, dot product

Compare min, max, compare

Manipulate extract, pack, shuffle

SIMD Instructions
of the Xpulp ISA

extension

26

|

ISA Extensions at Work

…
lp.setup x1,a4,stop1
p.lbu a0,1(a3!)
p.lbu a1,32(a2!)
stop1: p.mac a5,a0,a1
….

 The innermost loop has 4x less iterations
 4 bytes per matrix are loaded as a 32b word
 Dot product with accumulation performs in 1 cycle 4 macs

… //iterate #COL/4
lp.setup x1,a6,stop1
p.lw a1,4(t1!) //load 4-bytes with post inc
p.lw a5,4(t3!)
stop1: pv.sdotsp.b a7,a1,a5 //4 mac
….

27

|

Extensions at work
for (i = 0; i < 100; i++)

d[i] = a[i] + b[i];

mv x5, 0
mv x4, 100
Lstart:
lb x2, 0(x10)
lb x3, 0(x11)
addi x10,x10, 1
addi x11,x11, 1
add x2, x3, x2
sb x2, 0(x12)
addi x4, x4, -1
addi x12,x12, 1

bne x4, x5,
Lstart

Baseline

11 cycles/output

mv x5, 0
mv x4, 100
Lstart:
lb x2, 0(x10!)
lb x3, 0(x11!)
addi x4, x4, -1
add x2, x3, x2
sb x2, 0(x12!)

bne x4, x5,
Lstart

Auto-incr load/store

8 cycles/output

lp.setupi 100, Lend
lb x2, 0(x10!)
lb x3, 0(x11!)
add x2, x3, x2

Lend: sb x2,
0(x12!)

HW Loop

5 cycles/output

lp.setupi 25, Lend
lw x2, 0(x10!)
lw x3, 0(x11!)
pv.add.b x2, x3,

x2
Lend: sw x2, 0(x12!)

Packed-SIMD

1,25 cycles/output

28

Note: All-int computation – hard to quantize. What about FP?
See Luca Bertaccini’s lecture!

|

Advanced SIMD: Shuffle Instruction

 In order to use the vector unit the elements
have to be aligned in the register file

 Shuffle allows to recombine bytes into 1
register:

 pv.shuffle2.b rD, rA, rB

rD{3} = (rB[26]==0) ? rA:rD {rB[25:24]}
rD{2} = (rB[18]==0) ? rA:rD {rB[17:16]}
rD{1} = (rB[10]==0) ? rA:rD {rB[9: 8]}
rD{0} = (rB[2]==0) ? rA:rD {rB[1: 0]}

 With rX{i} = rX[(i+1)*8-1:i*8]

Mask bits

rD =

rD

rA

rB

29

|

 7 Sum-of-dot-product
 4 move
 1 shuffle
 3 lw/sw
 ~ 5 control instructions

Convolution in registers
5x5 convolutional filter

Shuffle for Direct SIMD Convolution

30

Significant benefit in reuse of registers and less LD/ST

|

GEMM-based Convolution

× =
w1

w4

w2
w3

S1 S2

S3 S4

S5 S6

S7 S8

x1 x2

Peak Performance (8 cores)

4x2 :
2x2 :12.8 MAC/cyc

15.5 MAC/cyc

× =
S1 S2

S3 S4

x1 x2

w1
w2

CMSIS-NN based Matrix Multiplication Layout: 2x2 PULP-NN Matrix Multiplication Layout: 4x2

RegisterFile
of the RI5CY core:
32 general purpose
registers

2x2: 43%
utilization

4x2: 69%
utilization

8-bit Convolution example

More Data Reuse
&

Higher utilization of the RF

31

Never underestimate the importance of registers! How to get “more”?

|

Achieving 100% dotpUnit Utilization

32

addi a0,a0,1
addi t1,t1,1
addi t3,t3,1
addi t4,t4,1
lbu a7,-1(a0)
lbu a6,-1(t4)
lbu a5,-1(t3)
lbu t5,-1(t1)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
bne s5,a0,1c000bc

8-bit Convolution RV32IMC

LD/ST with post
increment

HW Loop

8-bit SIMD sdotp

RV32IMCXpulp
N N/4 lp.setup

addi a0,a0,1
addi t1,t1,1
addi t3,t3,1
addi t4,t4,1
lbu a7,-1(a0)
lbu a6,-1(t4)
lbu a5,-1(t3)
lbu t5,-1(t1)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
end

lp.setup
p.lw w1, 4(a0!)
p.lw w2, 4(a1!)
p.lw x1, 4(a2!)
p.lw x2, 4(a3!)
mul s1,a7,a6
mul a7,a7,a5
add s0,s0,s1
mul a6,a6,t5
add t0,t0,a7
mul a5,a5,t5
add t2,t2,a6
add t6,t6,a5
end

lp.setup
p.lw w1, 4(a0!)
p.lw w2, 4(a1!)
p.lw x1, 4(a2!)
p.lw x2, 4(a3!)
pv.sdotsp.b s1, w1, x1
pv.sdotsp.b s2, w1, x2
pv.sdotsp.b s3, w2, x1
pv.sdotsp.b s4, w2, x2
end

9x less
instructions

than RV32IMC

14.5x less instructions
at an extra 3% area cost

(~600GEs)

can we remove?

Yes! dotp+ld

pv.nnsdot{up,usp,sp}.{h,b,n,c} rD, rs1, Imm

Init NN-RF (outside of the loop)
lp.setup
pv.nnsdotup.h s0,ax1,9
pv.nnsdotsp.b s1, aw2, 0
pv.nnsdotsp.b s2, aw4, 2
pv.nnsdotsp.b s3, aw3, 4
pv.nnsdotsp.b s4, ax1, 14
end

8-bit sdotp + LD

N/4

|

Hardware for dotp+ld

33

NN Register File: 6 32-bit registers (weights and input activations)

Special-purpose registers

|

Not only RISC-V: Armv8.1-M

34

 New embedded vector ISA Helium (MVE)
 Uses 8 128-bit vector registers (reuses the 32 FP registers)

 ISA enhancements for loops, branches (Low Overhead Branch Extension)
 Instructions for half-precision floating-point support
 Enhancements in debug including performance monitoring unit (PMU) and

additional debug support to focus on signal processing application
developments.
 Being able to set a breakpoint which triggers (halts code execution and passes control to

the debugger) when a certain count value is reached and being able to set a data
watchpoint with a bit mask for data value comparison (for example, for looking for a signal
value to be within a certain range).

|

ARM MVE Vectors

35

 Helium provides a SIMD capability for Cortex-M CPUs: a set of 128-bit registers are
provided which can be used to hold, e.g. 16 separate 8-bit values. A single instruction can
operate on each value independently (with predication)
 Extension of Arm Thumb
 Helium instructions operate on vectors of elements of the same data type: Int/FP
 Integer elements may be signed or unsigned 8-, 16-, 32-bit, fixed-point saturating (Q7, Q15, Q31)
 Floating-point elements may be single (32-bit) or half precision (16-bit).
 The position of an element in a vector is called lane

|

ARM MVE Vector Execution Model

36

 MVE permits instruction execution to be interleaved
 Multiple instructions may overlap in the pipeline execute stage. For example, a Vector Load

(VLDR) instruction which reads multiple words from memory into a vector register may
execute at the same time as a Vector Multiply (VMUL) instruction which uses that data

 It is up to the CPU hardware designer to decide how many “beats” are executed on
each clock cycle (eg. 32-bit datapath vs 64-bit datapath)

 Complicates exception handling
D of the VLDR happens after beat A of the VMLA has completed. If memory for beat D triggers a fault,
the processor needs to remember that the following instruction was part executed (storing a value which
shows which beats have already been executed). If fter exception handling, the program returns to this
location, the hardware already knows which beats should not be re-executed

|

Cortex-M55 Performance

37

 Performance relative to Cortex-M4
 Major improvements for Q7, FP16 (new datatypes in HW)
 ML benchmark (KWS): MFCC, DNN (2 conv, 3 FC

layers), 8-bit (w, act), 80-500KB, accuracy 90%-95%

Source: ARM at HC20

|

Next: Sub-byte precision

38

Quantizazion of a MobilenetV1_224_1.0 (*)

(*) Rusci M. et al., Memory-Driven Mixed Low Precision Quantization For Enabling
Deep Network Inference On Microcontrollers. . arXiv preprint arXiv:1905.13082.

Quantized Neural Networks (QNNs) are a natural target for execution on constrained
extreme edge platforms.

8b

5b

4b
3b

2b

1b

SoA Quantization Results

Mixed-precision approach key to meet
the memory constraints of tiny devices

Courtesy of Rusci M. «Example on MobilenetV1_224_1.0.»C

0.8%
4.4%
2.9%

4x
7x
8x

|

39

Sub-byte operands manipulation

8-bit Vector

32-bit data load with post increment (one cycle)

To MAC units

|

Mixed Precision SIMD Processor
Davide Rossi

ResultResultResultResult

Operand A Operand B

SIGN EXTENSION

DOT-PRODUCT MODULE

How to encode all these instructions?

 Can support all variants:
 16x16, 16x8, 16x4, 16x2
 8x8, 8x4, 8x2
 4x4, 4x2
 2x2

 Avoids Pack/unpack Overheads
 Maximized performance (SIMD)
 Maximizes RF use (Data Locality)

Digital computing platforms for near-sensor processing at the extreme edge of the IoT

|

Mixed-Precision Core: New Formats Required
dotp variants

add variants

sub variants
avg variants
shift variants
max variants
min variants
abs variants
…

> 500 instructions

|

Virtual SIMD Instructions

DECODER

CSR

MULT/ALU

MULT/ALU
SIMD

SCALAR
INSTR

VIRTUAL SIMD INSTR
SIMD

FORMAT

MAC3
2 SCALAR

SDOTP.v
MIX8x4

SDOTP.M8x4

 Encode operation as a virtual SIMD
in the ISA (e.g. sdotsp.v)

 Format specified at runtime by a
Control Register (e.g. 4x4)

 18018 Instructions needed for
SIMD DOTP

 Potential to avoid code replication for
different formats

 Tiny Overhead on QNN for Switching
format
Format switch not frequent in DNN,
e.g. every layer.

|
43

Processor HW extension

 Goal
 HW support for mixed-precision

SIMD instructions;

 Challenge
 Enormous number of instructions

to be encoded in the ISA;

 Solution
 Status-based execution.

|
44

Extended Dot-Product Unit
OpC

(32b scalar)

Output Result Mux

SLICER AND ROUTER

32b 32b 32b 32b

OpA
(32b SIMD vector)

OpB
(32b SIMD vector)

Dotp Result
(32b scalar)

Multi-Precision Integer Dotp-Unit

|

Xpulp Extensions Performance (Single Core)

up to 1.8x
up to 4x

up to 11x

Nice – But what about the GOPS?
Faster+Superscalar is not efficient!

M7: 5.01 CoreMark/MHz-58.5 µW/MHz
M4: 3.42 CoreMark/MHz-12.26 µW/MHz

45

Bottom line: pJ/OP is achievable on single core for ML workloads

|

Optimum
point

Better to have N× PEs running at
lower voltage than

one PE at nominal voltage!

ML & Parallel Near Thredhold PULP
 As VDD decreases,

operating speed decreases

 However efficiency
increasesmore work
done per Joule

 Until leakage effects start
to dominate

 Put more units in parallel
to get performance up and
keep them busy with a
parallel workload

ML is massively parallel
and scales well
(P/S with NN size)

46

|

Multiple RI5CY Cores (1-16)

CLUSTER

RISC-V
core

RISC-V
core

RISC-V
core

RISC-V
core

47

|

Low-Latency Shared TCDM

CLUSTER

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

Mem Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

Mem

Mem

48

|

High speed single clock logarithmic interconnect
P1 P2 P3 P4

B2 B3 B4 B5 B6 B7 B8B1

Routing
Tree

Arbitration
Tree

Processors

Memory
Banks

N+1N N+2 N+3 N+4 N+5 N+6 N+7
N+8

World-level bank interleaving «emulates» multiported mem

Ultra-low latency short wires + 1 clock cycle latency

A. Rahimi, I. Loi, M. R. Kakoee and L. Benini, "A fully-synthesizable single-cycle interconnection network
for Shared-L1 processor clusters," 2011 Design, Automation & Test in Europe, 2011, pp. 1-6.

49

|

Fast synchronization and Atomics

CLUSTER

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

Mem Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

Mem

Mem

50

Event
Unit

F. Glaser, G. Tagliavini, D. Rossi, G. Haugou, Q. Huang and L. Benini, "Energy-Efficient Hardware-Accelerated Synchronization for
Shared-L1-Memory Multiprocessor Clusters," in IEEE TPDS, vol. 32, no. 3, pp. 633-648, 1 March 2021.

|

Synchronization & Events

Avoid busy waiting!
Minimize sw synchro. overhead
Efficient fine-grain parallelization

HW
SYNCH

PE3PE2PE1PE0

Private, per core port
single cycle latency
no contention

51

|

52

Results: Barrier

 Fully parallel access to SCU: Barrier cost constant
 Primitive energy cost: Down by up to 30x
 Minimum parallel section for 10% overhead in terms of …
… cycles: ~100 instead of > 1000 cycles
… energy: ~70 instead of > 2000 cycles

|

PULP for ML (DNNs) Speedup
 8-bit convolution
 Open source DNN library

 10x through xPULP
 Extensions bring real

speedup

 Near-linear speedup
 Scales well for regular

workloads

 75x overall gain

Near-Linear
Speedup

Overall Speedup of 75x

10x Speedup w.r.t.
RV32IMC

(ISA does matter)

53

[Garofalo et al. Philos. Trans. R. Soc 20]

Chart1

		1 CORE		1 CORE

		1 CORE		1 CORE

		2 CORES		2 CORES

		4 CORES		4 CORES

		8 CORES		8 CORES

PULP(RV32IMCXpulp)

Ideal Speedup

1

9.8880978305

9.8880978305

19.5733916921

19.7761956611

38.6546254713

39.5523913221

74.8687983775

79.1047826442

convlayer_plain

		CONVOLUTIONAL LAYER (PLAIN)

		ifm(16x16x32) ofm(16x16x64) weights(64x3x3x32) str 1 pad1

		CYCLES				2900888852		giusti -->		45899809

		ACTIVE_CYCLES				290888954				45899763

		NUM_INSTR				201349813				32585939

		INSTR_MISS				28621				4198160

		LOAD_STALLS				80189064				0

		TCDM_CONT				0				0

		EXT_LOAD				0				0

		EXT_STORE				1				1

		NUM_BRANCH				5321284				5271044

		CONVOLUTIONAL LAYER (2x2 KERNEL NODSP)												CONVOLUTIONAL LAYER (2x4 KERNEL NODSP)												CONVOLUTIONAL LAYER (4x2 KERNEL NODSP)												CONVOLUTIONAL LAYER (1x2 KERNEL NODSP)												CONVOLUTIONAL LAYER (2x1 KERNEL NODSP)

		ifm(16x16x32) ofm(16x16x64) weights(64x3x3x32) str 1 pad1												ifm(16x16x32) ofm(16x16x64) weights(64x3x3x32) str 1 pad1												ifm(16x16x32) ofm(16x16x64) weights(64x3x3x32) str 1 pad1												ifm(16x16x32) ofm(16x16x64) weights(64x3x3x32) str 1 pad1												ifm(16x16x32) ofm(16x16x64) weights(64x3x3x32) str 1 pad1

		CYCLES				84709445		giusti --->		22739975				CYCLES												CYCLES												CYCLES												CYCLES

		ACTIVE_CYCLES				84709851				22739981				ACTIVE_CYCLES												ACTIVE_CYCLES												ACTIVE_CYCLES												ACTIVE_CYCLES

		NUM_INSTR				60433296				20318946				NUM_INSTR												NUM_INSTR												NUM_INSTR												NUM_INSTR

		INSTR_MISS				3036				2410				INSTR_MISS												INSTR_MISS												INSTR_MISS												INSTR_MISS

		LOAD_STALLS				1				1489				LOAD_STALLS												LOAD_STALLS												LOAD_STALLS												LOAD_STALLS

		TCDM_CONT				0				0				TCDM_CONT												TCDM_CONT												TCDM_CONT												TCDM_CONT

		EXT_LOAD				0				0				EXT_LOAD												EXT_LOAD												EXT_LOAD												EXT_LOAD

		EXT_STORE				1				1				EXT_STORE												EXT_STORE												EXT_STORE												EXT_STORE

		NUM_BRANCH				1266516				1220030				NUM_BRANCH												NUM_BRANCH												NUM_BRANCH												NUM_BRANCH

		FULLY CONNECTED LAYER (NO DSP)

		ifm(8x8x32) ofm(1x1x10) weights(10x8x8x32)												16 out neurons

		CYCLES				1043414				256293				344422

		ACTIVE_CYCLES				1043478				256262				344392

		NUM_INSTR				713227				227560				311589

		INSTR_MISS				4410				14				0

		LOAD_STALLS				297060				0				0

		TCDM_CONT				0				0				0

		EXT_LOAD				0				0				0

		EXT_STORE				1				1				1

		NUM_BRANCH				14356				14354				16404

		RELU LAYER (NO DSP)

		CYCLES								147521

		ACTIVE_CYCLES								147479

		NUM_INSTR								65556

		INSTR_MISS								15

		LOAD_STALLS								16384

		TCDM_CONT								0

		EXT_LOAD								0

		EXT_STORE								1

		NUM_BRANCH								32771

		MAX POOLING LAYER (NO DSP)

		ifm(32x32x16) ofm(16x16x16) ker_dim=2 str 2

		CYCLES				784851		giusti -->		193641

		ACTIVE_CYCLES				784974				194123

		NUM_INSTR				521933				150683

		INSTR_MISS				1173				59

		LOAD_STALLS				205907				544

		TCDM_CONT				0				0

		EXT_LOAD				0				0

		EXT_STORE				1				1

		NUM_BRANCH				28341				34260

Foglio1

				IMC		IMCXpulp

				1 core		1 core		2 cores		4 cores		8 cores

		CONV		22739975		2299732		1161780		588286		303731

				1 CORE		1 CORE		2 CORES		4 CORES		8 CORES

		S.U.		1		9.8880978305		19.5733916921		38.6546254713		74.8687983775

						9.8880978305		19.7761956611		39.5523913221		79.1047826442

Foglio1

		

|

0.001

0.01

0.1

1

8-bit convolution 4-bit convolution 2-bit convolution

STM32L4 (M4) STM32H7 (M7) PULP (RI5CY) 0.65V
PULP (RI5CY) 0.8V PULP (XpulpNN + m&l) 0.65V PULP (XpulpNN + m&l) 0.8V

8-Cores Cluster + XpulpNN + M&L (22nm)

146x

401x

1.6x
294x

1600x

6x 356x
1230x

7.4x

EN
ER

G
Y

EF
FI

C
IE

N
C

Y
[T

O
PS

/W
]

Lo
g

sc
al

e

54

|

55

Power analysis of a parallel 8-bit x 4-bit convolution

 Reduce unnecessary power consumption (not spent in computation)

 Exploit convolution’s instruction and memory data access pattern regularity

 Increase energy efficiency at low extra-area cost
 reconfigurable MIMD/SIMD architecture

Addressing Multicore Inefficiencies

CORES_ID_EX: 43.3%

CORES_IF: 10%

TCDM. : 22%

I$: 20%

CORE_0: 4%Unnecessary
power
consumption

55

|

56

The Power of SIMD

 Cores enter in SIMD (VLEM) mode when executing regular kernels (in two clock cycles)

 In SIMD, instruction flow orchestrated only by the MAIN core Less energy

 Cores resume in MIMD mode on divergent branches (..or control tasks) Flexibility

[Garofalo et al. ESSCIRC 2021]

56

|

57

Broadcasting Share Data

t2 t15

 Overhead: many clk cycles to unlock execution in case of concurrent accesses
 Eliminate overhead to access at same address BROADCAST UNIT
 Misalign static data and stacks to avoid accesses to the same mem bank

t1
BROADCAST

UNIT Logic

Convolution exec. kernels

~44% energy saving w.r.t.
MIMD mode

<10% area overhead
w.r.t. MIMD only cluster(*) 16 cores cluster as an example

57

|

Data memory Hierarchy: DMA-based, SW managed

CLUSTER

in
te

rc
on

ne
ctL2

Mem

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

Mem

Mem

58

|

An additional I/O controller for IO, off-chip Memory

CLUSTERPULPissimo

in
te

rc
on

ne
ctL2

Mem

Mem
Cont

I/O

RISC-V
core

Ext.
Mem

Tightly Coupled Data Memory

Logarithmic Interconnect

RISC-V
core

MemDMA Mem MemMem

RISC-V
core

RISC-V
core

RISC-V
core

Mem Mem MemMem

I$

Mem

Mem

I$ I$ I$

59

Event
Unit

|

All together in VEGA: Extreme Edge IoT Processor

60

 RISC-V cluster (8cores +1)
614GOPS/W @ 7.6GOPS (8bit
DNNs), 79GFLOPS/W @
1GFLOP (32bit FP appl)
 Multi-precision HWCE(4b/8b/16b)

3×3×3 MACs with normalization /
activation: 32.2GOPS and
1.3TOPS/W (8bit)
 1.7 μW cognitive unit for

autonomous wake-up from
retentive sleep mode

SoC: SoA MCU Parallel SW prog. accelerator

60

In cooperation with

D. Rossi et al., "Vega: A Ten-Core SoC for IoT Endnodes With DNN Acceleration and Cognitive Wake-Up From MRAM-
Based State-Retentive Sleep Mode," in IEEE Journal of Solid-State Circuits, vol. 57, no. 1, pp. 127-139, Jan. 2022

|

All together in VEGA: Extreme Edge IoT Processor

61

 RISC-V cluster (8cores +1)
614GOPS/W @ 7.6GOPS (8bit
DNNs), 79GFLOPS/W @
1GFLOP (32bit FP appl)
 Multi-precision HWCE(4b/8b/16b)

3×3×3 MACs with normalization /
activation: 32.2GOPS and
1.3TOPS/W (8bit)
 1.7 μW cognitive unit for

autonomous wake-up from
retentive sleep mode
 Fully-on chip DNN inference

with 4MB MRAM

Technology 22nm FDSOI

Chip Area 12mm2

SRAM 1.7 MB

MRAM 4 MB

VDD range 0.5V - 0.8V

VBB range 0V - 1.1V

Fr. Range 32 kHz - 450 MHz

Pow. Range 1.7 µW - 49.4 mW

In cooperation with

|

Full DNN Energy (MobileNetV2)

100

1000

10000

1

10

100

1000

Bandwidth [MB/s] Energy per byte [pJ/B]

300
200

1900

8000

20

880

1.4 <1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Energy per Inference [mJ]

weights on MRAM
weights on HyperRAM

3.5x less energyend-to-end on-chip computation
1.19 mJ

4.16 mJ

62

|

63

System Scalability… How many processors?

 Performance bottleneck at the core’s boundaries (single 32-bit data port)

 Energy efficiency bounded by limited scalability of low-latency local interco

 Custom datapaths to improve throughput and efficiency..

Pe
rf

or
m

an
ce

[G
O

PS
]

En
er

gy
 E

ffi
ci

en
cy

[T
O

PS
/W

]

0

0.5

1

1.5

0

20

40

60

80

100

1 C 2 C 4 C 8 C 16 C 32 C

Performance Energy Efficiency

Near-linear
speed-up

Sub-linear
speed-up

[Ottavi et al. arXiv 2022]

Results from convolution kernels run on 65nm silicon prototype

Note: ..but at which cost? See Gianna Paulin’s Lecture
63

http://pulp-platform.org @pulp_platform

Luca Benini, Alessandro Capotondi, Alessandro Ottaviano, Alessio
Burrello, Alfio Di Mauro, Andrea Borghesi, Andrea Cossettini, Andreas
Kurth, Angelo Garofalo, Antonio Pullini, Arpan Prasad, Bjoern Forsberg,
Corrado Bonfanti, Cristian Cioflan, Daniele Palossi, Davide Rossi, Fabio
Montagna, Florian Glaser, Florian Zaruba, Francesco Conti, Georg
Rutishauser, Germain Haugou, Gianna Paulin, Giuseppe Tagliavini,
Hanna Müller, Luca Bertaccini, Luca Valente, Manuel Eggimann,
Manuele Rusci, Marco Guermandi, Matheus Cavalcante, Matteo Perotti,
Matteo Spallanzani, Michael Rogenmoser, Moritz Scherer, Moritz
Schneider, Nazareno Bruschi, Nils Wistoff, Pasquale Davide Schiavone,
Paul Scheffler, Philipp Mayer, Robert Balas, Samuel Riedel, Segio
Mazzola, Sergei Vostrikov, Simone Benatti, Stefan Mach, Thomas Benz,
Thorir Ingolfsson, Tim Fischer, Victor Javier Kartsch Morinigo, Vlad
Niculescu, Xiaying Wang, Yichao Zhang, Frank K. Gürkaynak,
all our past collaborators and many more that we forgot to mention

	Low Power Multicore Solutions for Approximation
	Slide Number 2
	 CloudML TinyML
	TinyML Workloads – DNNs (and More)
	ML on MCUs?
	Energy efficiency @ GOPS is the Challenge
	The Tunnel: High-Performance vs. Energy-Efficient
	A way Out: Processor Specialization
	RISC-V Instruction Set Architecture
	RISC-V Foundation Members
	RISC-V ISA Baseline and Extensions
	Baseline + Extensins in a Page
	RISC-V Architectural State
	RISC-V Instructions four basic types
	RISC-V is a load/store architecture
	Encoding of the instructions, main groups
	How to get efficiency: ISA extensions
	Post increment LD/ST
	Hardware loops�
	Multiply Accumulate
	Xpulp Extentions: packed-SIMD
	Xpulp Extensions: packed-SIMD
	ALU architecture
	Expanding SIMD Dot Product
	MUL architecture
	Reference & Examples on Compiler Builtins
	ISA Extensions at Work
	Extensions at work
	Advanced SIMD: Shuffle Instruction
	Shuffle for Direct SIMD Convolution
	GEMM-based Convolution
	Achieving 100% dotp Unit Utilization
	Hardware for dotp+ld
	Not only RISC-V: Armv8.1-M
	ARM MVE Vectors
	ARM MVE Vector Execution Model
	Cortex-M55 Performance
	Next: Sub-byte precision
	Sub-byte operands manipulation
	Mixed Precision SIMD Processor
	Mixed-Precision Core: New Formats Required
	Virtual SIMD Instructions
	Processor HW extension
	Extended Dot-Product Unit
	Xpulp Extensions Performance (Single Core)
	ML & Parallel Near Thredhold PULP
	Multiple RI5CY Cores (1-16)
	Low-Latency Shared TCDM
	High speed single clock logarithmic interconnect
	Fast synchronization and Atomics
	Synchronization & Events
	Results: Barrier
	PULP for ML (DNNs) Speedup
	8-Cores Cluster + XpulpNN + M&L (22nm)
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Data memory Hierarchy: DMA-based, SW managed
	An additional I/O controller for IO, off-chip Memory
	All together in VEGA: Extreme Edge IoT Processor
	All together in VEGA: Extreme Edge IoT Processor
	Full DNN Energy (MobileNetV2)
	Slide Number 63
	Slide Number 64

