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Transprecision Computing: More than just approximation
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• Floating-Point is everywhere

• Conservative with precision

− Use largest precision everywhere & always

• Approximate Computing?

• Transprecision Computing!

− Just right precision anywhere & anytime

− Potential energy savings & speedup

• Holistic approach necessary
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Enable energy-proportional transprecision computing in hardware!



Low-Precision Formats: Hardware Benefits
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(−1)s× 2 exp −BIAS × 1. mant

𝐵𝐼𝐴𝑆 = 2𝑒−1 − 1



Low-Precision Formats: Hardware Benefits
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• Precision Tuning

− “smallFloat” formats

(−1)s× 2 exp −BIAS × 1. mant

𝐵𝐼𝐴𝑆 = 2𝑒−1 − 1



Low-Precision Formats: Hardware Benefits
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• Same dynamic range as FP32
• Much less precision than FP32

• Less dynamic range than FP32
• Less precision than FP32

• Same dynamic range as FP16
• Less precision than FP16

(−1)s× 2 exp −BIAS × 1. mant

𝐵𝐼𝐴𝑆 = 2𝑒−1 − 1

Format
# Representable 
values

Minimum Value
(subnormal)

Minimum Value 
(normal)

Maximum Value

FP32 (1,8,23) 4.29 × 109 ≈ 1.40 × 10-45 ≈ 1.18 × 10-38 ≈ 3.40 × 1038

Bfloat16 (1,8,7) 65536 ≈ 9.2 × 10-41 ≈ 1.18 × 10-38 ≈ 3.40 × 1038

FP16 (1,5,10) 65536 ≈ 5.96 × 10-8 ≈ 6.10 × 10-5 ≈ 65504

FP8 (1,5,2) 256 ≈ 1.53 × 10-5 ≈ 6.10 × 10-5 ≈ 57344



Low-Precision Formats: Hardware Benefits
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• Precision Tuning

− “smallFloat” formats

− SIMD vectors

− Native hardware support

• Several benefits:

− Higher Performance

− Higher energy efficiency

− Lower memory footprint

(−1)s× 2 exp −BIAS × 1. mant

𝐵𝐼𝐴𝑆 = 2𝑒−1 − 1



Boosting the Energy Efficiency through ISA extension
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• General purpose: tune precision & performance for high 
energy-efficiency

• General-purpose RISC-V CPUs can be extended with 
domain-specific ISA extension:

− Opportunities for deeply optimizating the efficiency of the cores

− Without comprimising the baseline standardized ISA (still general-
purpose) 
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A Transprecision FPU

General purpose: tune precision & performance for 
high energy-efficiency



An Open-Source Transprecision FPU
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• Support standard IEEE 754 FP

• Optimize performance and energy-efficiency

− SIMD vectors

− Special operations

• Many target domains

− Operations & Formats

− Technology

− Architecture

• Enable new research

General-
Purpose

Efficient Flexible

Standard tools Open source

What is needed?



CVFPU: Architecture
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• Hierarchical approach

1. Grouped by operation
(i) ADDitions and MULtiplications carried out on an 
FMA unit ( FMA = a *b + c)
(ii) division and square root
(iii) comparisons
(iv) conversions (FP<->FP or INT<->FP)

Width

• Datapath width

“FPnew: An Open-Source Multiformat Floating-Point Unit Architecture for 
Energy-Proportional Transprecision Computing” -- S. Mach et al.



CVFPU: Architecture
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• Hierarchical approach:

1. Grouped by operation

2. Sliced by format

• Datapath width

• Any formats (new formats can be defined in a 
package at design time)

• Stand-alone or multi-format or none

Formats

Implementation



CVFPU: Architecture
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• Hierarchical approach:

1. Grouped by operation

2. Sliced by format

3. Lanes for SIMD

4. Execution unit

• Datapath width

• Any formats

• Stand-alone or multi-format or none

• SIMD support or scalar only

• Pipelining for execution unit

Vectors
• FMA (Single-path architecture)
• Comparisons

Pipelining



CVFPU: Architecture
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• Hierarchical approach:

1. Grouped by operation

2. Sliced by format

3. Lanes for SIMD

4. Execution unit

• Datapath width

• Any formats

• Stand-alone or multi-format or none

• SIMD support or scalar only

• Pipelining for execution unit



• Hierarchical approach:

1. Grouped by operation

2. Sliced by format

3. Lanes for SIMD

4. Execution unit

• Datapath width

• Any formats

• Stand-alone or multi-format or none

• SIMD support or scalar only

• Pipelining for execution unit
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CVFPU: Architecture

• FMA (Single-path architecture)
• Supports multi-format FMA

• DIV/SQRT (Iterative non-restoring)
• Blocking implementation

• Casts
• Vector casts
• Scalar → vector packing



CVFPU: Architecture
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• Width

• Any formats

• Implementation

• SIMD

• Pipelining

• Open-Source

• Synthesizable

• Hackable
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Embedded

CVFPU: Highly Configurable

CVFPU is highly parametrized to fit into a large variety of architectures:

• Width

• Formats

• Implementation

• SIMD

• Pipelining

HPC



Programmability
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• RISC-V extensions and compiler support

• Filter on FP16 data

• Native FP16

− Error accumulation! Degraded by 14.6x

• Native FP32

− Decrease rel. error

− 58% more system energy

• Expanding FMA

− Same precision as FP32

− Comparable system energy to FP16

• Compiler intrinsics

FPnew is the perfect enabler for transprecision computing systems.
Let’s build some!



Embedded Transprecision Multi-Core Cluster
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• Edge Computing for signal processing

• Build a multi-core cluster of RI5CY cores

− FP32, FP16, bfloat16

− Share TP-FPUs

• Design Space Exploration

− # Cores

− FPU/Core Ratio

− # Pipeline stages

• Implemented in 22FDX

− Post-layout power

• Implemented on FPGA

− Benchmarks



Multi-Core Cluster: Selected Results
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• 8x 4 Benchmarks, 18 architectures

• Best architectures

− Performance: 3.4 spGflop/s

− Energy Efficiency: 99 spGflop/sW

− Area Efficiency: 2 spGflop/smm2

• Compared to SoA:

− Outperforming SoA low-power embedded 
systems 
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Low-Power Embedded Systems

Performance Area Efficiency Energy Efficiency

Our TP-FPU architecture opens a huge design space for embedded TP computing 
systems. What about high-performance?



Kosmodrom: Application-class transprecision computing
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• Dual-core Ariane ASIC in 22nm FDX

• Ariane: 64-bit, 6-stage RISC-V with CVFPU

− FP64, FP32, FP16, BF16, FP8

− SIMD for FP32 – FP8

• TP-FPU is ~30% of the core, only +9% area

Architecture Precision Voltage

Biasing Process



Kosmodrom: TP-FPU Energy Measurements (in Silicon)
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• Scalar: equal performance @ reduced energy

− FP64: 13.4 pJ/flop

− FP8: 1.27 pJ/flop

• Superlinear scaling

-64%
-90%

10.5x more efficient

• Vector: improved performance @ equal energy

− FP64: 13.4 pJ/flop

− FP8: 0.80 pJ/flop

• Superlinear scaling

• Improved performance at improved energy

-26% @ 2x throughput
-52% @ 8x throughput

16.8x more efficient
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A Transprecision FPU 
enhanced for NN training



The Rapid Growth of AI

• NN models’ memory and compute 
requirements are growing rapidly

• Technology scaling is not sufficient

• Required algorithmic and architectural
advancements

23

S. Lie, “Thinking outside the die: Architecting the ML accelerator of the future”

APROPOS Winter School 2023



Algorithmic Advancements
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• New low-precision data types:

• 32-bit → 19-bit → 16-bit → 8-bit 
floating-point (FP) data types

• Lower memory requirements

• Opportunities for more efficient
hardware architectures

• Wide interest for standardization
(RISC-V FP SIG, IEEE P3109)

Only few mantissa bits

• New mixed and low-precision training
algorithms have been developed to exploit 
the resilience of NN models to noise

• Expanding/Widening operations in which the 
accumulation is performed in higher
precision



Efficient RISC-V Compute Clusters: Scalar + Parallel
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• Manticore cluster: Snitch compute 
cluster*

• Small integer scalar 32b cores coupled
with large SIMD FPUs (FP64, FP32) sharing 
a scratchpad memory

• ISA extensions that implicity encode
loads/stores to register reads/writes + 
loops handled in HW → ~90% FPU 
utilization

• Need for narrow FP formats and 
expanding instructions to efficiently tackle 
mixed, low-precision NN training

Snitch Cluster

*https://github.com/pulp-platform/snitch
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Academic Architecture for HPC - Manticore

• Manticore: a chiplet-based hierarchically-scalable architecture

• Linux-capable host + large manycore accelerator built upon the replication of efficient L1-shared 
compute clusters

26

Zaruba et al. (Manticore: A 4096-core RISC-V chiplet
architecture for ultraefficient floating-point computing)

APROPOS Winter School 2023 



Without Mixed-Precision Capabilities

27APROPOS Winter School 2023 

In the case of no mixed-precision support:

If the application can work on FP16/FP16ALT 
inputs but accumulation in FP32 required:

• FP16 with accumulation on FP32 requires
additional conversion which affects the 
performance

• An FP32 kernel can be used

<configure loop>

Loop:

simd_fmacc.s fa0, ft0, ft1

EndLoop:

<reduction>

N



Without Mixed-Precision Capabilities
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<configure loop>

Loop:

simd_fmacc.s fa0, ft0, ft1

EndLoop:

<reduction>

N

In the case of no mixed-precision support:

If the application can work on FP16/FP16ALT 
inputs but accumulation in FP32 required:

• FP16 with accumulation on FP32 requires
additional conversion which affects the 
performance

• An FP32 kernel can be used

• SIMD FP32 FMA

+

ft0

ft1

FP32 FP32 fa0

SIMD FMA                                FMA: aw*bw + cw

FP32FP32

64 bits

+

FP32 FP32FP32FP32

FP32 FP32FP32FP32FP32FP32

××



SIMD Expanding FMA
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FP16 FP16 FP16 FP16

FP16 FP16 FP16 FP16

ft0

ft1

FP32 FP32 fa0

SIMD ExFMA ExFMA: aw*bw + c2w

FP16

FP16

FP32

FP16

FP16

FP32

64 bits

××

++

<configure loop>

Loop:

simd_exfma.a fa0, ft0, ft1

simd_exfma.b fa1, ft0, ft1

EndLoop:

<reduction>

• SIMD Expanding FMA: Unbalanced
• Consumes half of ft0, ft1 and the whole fa0

N/2
N/2



<configure loop>

Loop:

simd_exfma.a fa0, ft0, ft1

simd_exfma.b fa1, ft0, ft1

EndLoop:

<reduction>

SIMD Expanding FMA
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FP16 FP16 FP16 FP16

FP16 FP16 FP16 FP16

ft0

ft1

FP32 FP32 fa0

SIMD ExFMA ExFMA: aw*bw + c2w

FP32FP32

64 bits

++

• Multiple instructions to cover all possible
source locations needed

• The unbalanced ExFMA underutilizes the 
FPU bandwidth
(2*32+64 bits instead of 3*64 bits)

• We can provide the FPU with more data 
and compute more every cycle

▪ SIMD Expanding FMA: Unbalanced
▪ Consumes half of ft0, ft1 and the whole fa0

FP16

FP16

FP16

FP16

××

N/2
N/2



<configure loop>

Loop:

exsdotp.s.h fa0, ft0, ft1

EndLoop:

vsum.s fa1, fa0 #reduction

SIMD Expanding Sum of Dot Product for Mixed Precision
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N/2

FP16 FP16 FP16 FP16

FP16 FP16 FP16 FP16

ft0

ft1

FP32 FP32 fa0

SIMD ExSdotp Exsdotp: aw*bw + cw*dw + e2w

FP16

FP16

FP32

FP16

FP16

FP32

64 bits

FP16

FP16

FP16

FP16

××

+

+

××

+

+

• With SIMD ExSdotp, 2x FLOP per cycle
• Same perf as SIMD FP16 FMA but more accurate



<configure loop>

Loop:

exsdotp.s.h fa0, ft0, ft1

EndLoop:

vsum.s fa1, fa0 #reduction

SIMD Expanding Sum of Dot Product for Mixed Precision
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FP16 FP16 FP16 FP16

FP16 FP16 FP16 FP16

ft0

ft1

FP32 FP32 fa0

SIMD ExSdotp Exsdotp: aw*bw + cw*dw + e2w

FP16

FP16

FP32

FP16

FP16

FP32

64 bits

FP16

FP16

FP16

FP16

××

+

+

××

+

+

• With SIMD ExSdotp, 2x FLOP per cycle
• Same perf as SIMD FP16 FMA but more accurate

00...0 FP32 fa1FP32

64 bits

+

FP32 FP32 fa0FP32FP32

Vsum Vsum: a2w + c2w + e2w

+

N/2



Why Fused ExSdotp Units?
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• A cascade of two ExFMAs computes an 
expanding dot product

• Non-distributive FP addition

• Fused ExSdotp unit
• Single normalization and rounding step
• Opportunity to mitigate issues related

to the non-associativity of the two
consecutive additions

ExFMA

ExFMA

ExSdotp

ExSdotp2w = aw*bw + cw*dw + e2wCascade2w = aw*bw + (cw*dw + e2w)

2wwwww

2w2w

2w

2www

ww

APROPOS Winter School 2023 



Targeted Floating-Point Formats
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• ExSdotp source formats:

• FP16alt (1, 8, 7) 

• FP16 (1, 5, 10) 

• FP8alt (1, 5, 2)

• FP8 (1, 4, 3)

• ExSdotp destination formats:

• FP32 (1, 8, 23)

• FP16alt (1, 8, 7)

• FP16 (1, 5, 10)

*Subnormals handled for all combinations of formats

• A parametric design to enable fast exploration of new FP formats

Alternate formats are 
enabled by FCSRs to 

reduce the number of 
instructions

Many formats + mixed-
precision would result
in a large ISA extension



Expanding Sum of Dot Product Unit
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• w = source format bitwidth; ps = source format 
mant bits 

• 2w = destination format bitwidth;  pd = destination
format mant bits

• ExSdotp = aw*bw + cw*dw + e2w

Mantissa dataflow

aw bw cw dw e2w

Three-addend sorting

x

>>

+

Normalization & Rounding

+

>>

x

max int min

pd pd pd

psps psps

2pd+ps+42pd+4

2pd+ps+5

2pd+32pd+3

pd

“MiniFloat-NN and ExSdotp: An ISA Extension and a Modular Open Hardware Unit 
for Low-Precision Training on RISC-V Cores” – L. Bertaccini et al.



Expanding Sum of Dot Product Unit
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• w = source format bitwidth

• 2w = destination format bitwidth

• ExSdotp = aw*bw + cw*dw + e2w

• ExVsum = aw*1 + cw*1 + e2w

• Vsum = a2w + c2w + e2w

• ExVsum/Vsum to reduce and accumulate the results
packed in a register after SIMD ExSdotp executions

• Support for non-expanding three-term sum added by 
bypassing the multiplications

• All the necessary logic is already present as the 
targeted ExSdotp operations were expanding

aw bw cw dw e2w

Three-addend sorting

x

>>

+

Normalization & Rounding

+

>>

x

max int min

pd pd pd

psps psps

2pd+ps+42pd+4

2pd+ps+5

2pd+32pd+3

pd

Mantissa dataflow

“MiniFloat-NN and ExSdotp: An ISA Extension and a Modular Open Hardware Unit 
for Low-Precision Training on RISC-V Cores” – L. Bertaccini et al.



Enhancing CVFPU with SIMD ExSdotp
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• CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU

APROPOS Winter School 2023 



Enhancing CVFPU with SIMD ExSdotp
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• CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU
• SIMD FMA unit
• As proposed in https://iis-git.ee.ethz.ch/smach/smallFloat-spec

APROPOS Winter School 2023 



Enhancing CVFPU with SIMD ExSdotp

39

• CVFPU is a highly-parameterized open-source modular energy-efficient multi-format FPU
• SIMD ExSdotp unit integrated into CVFPU as a new operation group block
• SIMD SDOTP: two 16-to-32-bit units and two 8-to-16-bit units
• Up to two 16-to-32-bit ExSdotp and four 8-to-16-bit ExSdotp per cycle

APROPOS Winter School 2023 



Enhancing CVFPU with SIMD ExSdotp

40

• Parametrizable number of pipeline levels. In our specific case, we selected:
• SDOTP: 3 levels of pipeline registers
• ADDMUL: 3 levels of pipeline registers
• CAST: 2 levels of pipeline registers
• COMP: 1 levels of pipeline registers

APROPOS Winter School 2023 



ExSdotp & CVFPU: Area and Timing
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• Implemented in GlobalFoundries 12nm 
FinFET technology

• Max Frequency → 1.24GHz (typ 0.8V, 25 °C) 

• The fused ExSdotp unit allows for around 30%
area and critical path reduction with respect
to a cascade of ExFMA modules.

• The SIMD SDOTP unit occupies 44.5 kGE, 
amounting to 27% of the enhanced FPU area 
(overall FPU area = 165kGE). 

• Full extension introduced less than 15% area 
overhead at a cluster level

30%

30%



MiniFloat-NN Cluster: Performance and Efficiency
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FMA-based
GEMM



MiniFloat-NN Cluster: Performance and Efficiency
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FMA-based
GEMM

ExSdotp-based
GEMM

Same performance at a higher accumulation precision



MiniFloat-NN Cluster: Performance and Efficiency
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FMA-based
GEMM

ExSdotp-based
GEMM

1.9x



MiniFloat-NN Cluster: Performance and Efficiency
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FMA-based
GEMM

ExSdotp-based
GEMM

More than 7x performance and energy efficiency improvement with respect to 
FP64 computation (<15% area overhead on the entire cluster) + reduced

memory footprint

7.2x
With the 

required higher
precision

accumulation

More than 1.9x 
performance 

wrt ExFMA and 
50% more 
efficient



Conclusion

• Transprecision computing enabling high efficiency and performance gains

• Transprecision support allows for exploiting lower memory footprint

• Open-source, highly efficient and flexible FPU enabling transprecision
computing on general-purpose architecture

46

https://github.com/pulp-platform/fpnew

APROPOS Winter School 2023 



Conclusion
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10+ ASICs including FPnew
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Not only general-purpose
computing…



CVFPU Functional Units as Building Blocks for DSA Datapath

• CVFPU is a modular design 

• The execution units can be reused as building blocks
for domain-specific accelerator (DSA) datapaths.

• Example → RedMulE: floating-point GEMM 
accelerator (https://github.com/pulp-platform/redmule)

• RedMulE: HW Accelerator for GEMMs for FP8/FP16

• 2D Array of  Computing Elements (CE) operating in lockstep and 
distributed in rows and columns

• CEs has private copies of their 𝐗-matrix elements, 𝑾-matrix elements
broadcasted among rows of CEs.

• In/output cast unit casting (FP8       FP16) for high computing accuracy 

49

𝑮𝑬𝑴𝑴: 𝐙 = 𝐗 ×𝑾 + 𝐘

Darkside 65nm, ESSCIRC’22

(UNIBO+ETHZ+EPFL)

APROPOS Winter School 2023 

https://github.com/pulp-platform/redmule


Thank you for your attention!

50

pulp-platform.org@pulp_platform youtube.com/pulp_platform
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